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Abstract 

In recent years IoT has developed very rapidly. IoT devices are used to monitor and control 
physical objects to transform the physical world into intelligent spaces with computing and 
communication capabilities. Compared to cloud computing, fog computing is used to support 
latency-sensitive applications at the edge of the network which allows client requests to be 
processed faster. This study aims to propose a monitoring framework for containerized black box 
microservices in a fog computing environment to evaluate CPU overhead, as well as to determine 
the operating status, service characteristics, and dependencies of each container. 

This study proposes a monitoring framework to integrate computing resource usage and 
run-time information from service interactions using a black box approach that seeks to integrate 
service-level information and computing resource information into the same framework. The 
proposed framework is limited to observing information monitoring after the server receives a 
request. This study uses JMeter to simulate user actions, which send requests to the server, and 
this research assumes the user knows the IP address of the server. For container monitoring 
methods in fog computing, all are indirect monitoring methods. 

The results of this study indicate that the proposed framework can provide operational data 
for visualization that can help system administrators evaluate the status of running containers 
using a black box approach. System administrators do not need to understand and modify target 
microservices to gather service characteristics from containerized microservices. Regarding future 
research, it is suggested to expand the exploration of modified system information, and that part 
of the container management tool code can be pre-tried so that the framework proposed in this 
study can provide real-time quantitative indexes for the load balancing algorithm to help optimize 
the load balancing algorithm. 
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INTRODUCTION 

Until now the Internet of Things (IoT) has experienced rapid development. IoT devices 
consist of sensors and/or actuators, connectivity, and computing power. These devices are used to 
monitor and control physical objects. IoT devices are responsible for collecting data through 
sensors. Since IoT devices have limited computing power, cloud computing resources are used to 
analyze sensor data (Doukas & Maglogiannis, (2012)). In this design model, there is a clear division 
of tasks between the cloud and the IoT devices placed at the edge of the network. That is, the edge 
is responsible for data collection whereas the cloud is responsible for data processing and 
management of IoT devices. Cloud systems can combine data from various devices for IoT 
services. The cloud can collect data from temperature, humidity, anemometer sensors, sensitivity 
gauges, and air quality detectors to analyze weather forecasting information (Kaur & Maheshwari, 
(2016)). However, with the increasing number of IoT devices and data, as well as the physical 
distance between the network edge and the cloud data center, the volume of data to be transferred 
is expected to increase drastically resulting in a large network load. Even the promise of 5G isn't 
enough for some apps as 5G is for mobile networks. In addition to network congestion, cloud 
computing capabilities can also reach their limits during peak hours. Due to excess communication 
and computing resources, high latency will occur. For some services, high latency is unacceptable. 

To overcome the challenges posed by network latency, the concept of fog computing 
proposed by Cisco (2015) has received widespread attention. Fog computing refers to the 
deployment of servers with low computing performance distributed near the edge of the network 
closer to the data source. These resources are used to provide data analysis, aggregation data 
processing, and other services. In this way, not all data needs to be sent to the cloud-based system, 
and most of the data processing can be done in the fog nodes. The communication load on the 
network core is greatly reduced. In the scenario of cloud computing and Internet of Things 
applications, another important technology is the containerization of microservices. The use of 
microservices has been proposed for use in software development as opposed to monolithic 
software. Traditional monolithic software design means all software functions are packaged in one 
program whereas microservices design can separate various functions in software into different 
programs. This design pattern provides more flexibility Sun et al, (2017). Programs that provide 
some of these software functions are called microservices. Microservices can be packaged in 
containers. IoT applications can consist of several microservices. Some of these microservices can 
be shared by various IoT applications. Microservices can be encapsulated in containers and can be 
deployed on different compute nodes. Microservices may need to be replicated due to high demand 
and this requires appropriate nodes to deploy services. There is also a need to be able to determine 
whether an IoT application is capable of meeting run-time requirements. This requires monitoring 
interactions among microservices. Furthermore, determining the nodes to host microservices must 
consider the potential for overload to avoid it. 

In the use of fog computing to expand cloud computing, the orchestration of computing 
resources plays an important role. Most fog computing resource orchestration work assumes that 
monitoring of resources and service interactions is in place. The data required by resource 
orchestration frameworks are diverse and can be categorized into two categories. One is the 
consumption of hardware resources as represented by CPU, RAM, and network bandwidth in 
addition to service layer information, such as the number of requests received by microservices, 
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the error rate of requests processed by microservices, and dependencies between microservices 
(Mayer). & Weinreich, (2017)). 

BACKGROUNDS  

The development of the internet has brought more and more users and over time more 
complex needs. The advent of cloud computing has greatly reduced the cost of computing resources 
for developers and allowed clients to rent computing resources from cloud computing vendors who 
have data centers with strong computing resources. Developers can deploy their applications and 
services in data centers and pay according to resource usage. With cloud computing, developers 
can better control costs by deploying computing resources as needed. Cloud computing can provide 
dynamic and flexible computing and resources, scalability, stable backup, and simple deployment. 

 

Figure 1: Cloud computing 

 

Figure 2: Cloud Service Types and Layers 

Cloud computing provides various service models as presented in figure 2. The most 
common modes are IaaS, PaaS, and SaaS. IaaS can provide the hardware tools needed by 
applications, including servers, storage, and networking. Developers can lease these resources to 
deploy their operating systems, computing environments, and applications. IaaS service providers 
include Rackspace, Amazon Web Service, Microservice Azure, etc. IaaS and PaaS service 
providers also provide and manage operating systems, middleware, and software. The client only 
needs to focus on developing and maintaining the application. AWS Elastic Beanstalk and Google 
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App Engine are typical PaaS providers. SaaS is a way for service providers to directly deliver 
services to end users. Users can access data stored in the cloud via any device at any location. A 
representative example of such a service is Google Drive Storage, a Google application.  

RELATED WORK 

IoT application scenarios typically include sensors that generate data that are often periodic 
and often generate large amounts of data. Reliance on cloud computing means the transmission of 
data over long distances resulting in high latency for processing and the potential for sending large 
amounts of data which can lead to network congestion. This led Cisco to propose the fog computing 
concept Bonomi et al, (2017) which refers to the deployment of computing resources at the edge 
of the network closer to the data source. The computing resources/capacity of a fog node server is 
less than a cloud data center Yi et al, (2015). 

 

Figure 3: Fog computing 

 

Figure 4: Mist Nodes 

Compared to cloud computing, where all computing tasks are centralized and delivered in 
the cloud, fog computing is used to support latency-sensitive applications at the edge of the network 
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enabling client requests to be processed faster. This feature makes it possible to have latency-
sensitive application scenarios such as autonomous driving Huang et al, (2017), healthcare 
Kraemer et al, (2017) smart factories Brito et al, (2016). If the computing performance of fog 
computing cannot support the client's demand, fog computing can be used as a gateway to 
aggregate and filter the original data, thereby reducing the communication burden from the client 
to the cloud. The application of fog computing varies to Yi et al, (2015), but its main feature is 
combining several computing devices with low computational performance into a cluster which is 
often referred to as a fog node. Among the various fog node implementation methods, the 
Raspberry Pi is considered a suitable and promising implementation method. Bellavista et al, 
(2017) demonstrated the feasibility of Raspberry Pi as a fog node computing device and claimed 
that fog nodes using Raspberry Pis had good scalability, flexibility, appropriate cost, and easy 
deployment features. Other research shows that the use of Raspberry Pi for fog computing to 
implement the Raspberry Pi fog node to process real-time data can be used on the fog node. Fog 
computing is an extension of cloud computing. However, extensions of this kind do more than just 
increase deployment volume and server density. Compared to cloud computing, fog computing is 
closer to the user, and relatively more dynamic in responding to usage scenarios, such as providing 
automated services for autonomous driving Huang et al, (2017), providing instant data processing 
and equipment management for smart factories Brito et al, (2016) and providing computing for 
smart city infrastructure, etc. These different application scenarios mean that fog computing has 
different characteristics, such as geographic awareness of equipment, real-time service migration 
according to user requirements, diversity of server hardware, and limited computing performance 
of hardware equipment. 

In fog computing container monitoring and microservices are usually done separately with 
different designs and tools. Container monitoring is a type of virtual resource monitoring and its 
focus is to provide visibility of virtual machine resources and performance. Therefore, the 
indicators that are the focus of container monitoring solutions are Health (On/Off), Performance 
(CPU, RAM, Bandwidth, Storage), capacity, security, and power (Chandran & Walvekar, 2014). 
The focus of monitoring microservices is to ensure the stable operation and optimization of service 
applications. Therefore, indicators of concern are at the service layer, such as request tracking, 
service-specific error rates, and service interactions and dependencies (Mayer & Weinreich, 2017). 
These two monitoring methods have different logic and design goals, so they are often not 
integrated into the same framework. In a fog computing environment, the combination of these two 
technologies can be used well for various service scenarios. 

LITERATURE REVIEW 

To represent the information obtained in the study of the literature, this research takes the 
ideas of Yigitoglu et al, (2017), namely a review survey (Bonomi et al, 2014)), where the fog 
computing orchestration analysis must be circled by Probe (Monitoring), Analysis, Plan, and 
Execute, and the monitoring objective must provide the data required for orchestration and 
analysis. Then Yigitoglu et al, (2017) represent different algorithms in three different scenarios that 
may require different monitoring data. Yigitoglu et al, (2017) proposed compiling a task 
specification file that describes the characteristics of microservices to load the appropriate task on 
the appropriate server. Their research focus includes fog computing topologies, inter-node 
communication, and support for IoT devices. However, these works do not consider the use of 
containers. 

Bonomi et al (2014) analyzed the characteristics of fog computing from the perspective of 
application scenarios and compositional structures. Cloud computing resources are managed 
centrally, and the composition of server resources is relatively more homogeneous. As an extension 
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of the cloud computing layer, the fog computing layer consists of heterogeneous server devices. 
This heterogeneous coverage includes high-end servers, edge routers, single-board computers, set-
top boxes, and end devices such as vehicles or mobile phones. In a fog computing environment, 
the network infrastructure may also be heterogeneous (eg: LTE, and WiFi). To standardize the 
management of fog node devices, Bonomi et al (2014) defined a fog abstraction layer as shown in 
Figure 5. This fog abstraction layer hides device heterogeneity by defining devices from a 
computing resource perspective. Compute, storage, and network resources can be virtualized. 
Monitoring data will be used for service delivery and orchestration. Although the container 
monitoring solution is to provide monitoring data for container management/orchestration 
algorithms, under different requirements, there are different requirements for monitoring data. 
Yigitoglu et al. (2017) propose Foggy, which is an orchestration framework for containerized 
microservices in a fog computing environment. User Preferences and desired container behavior 
are defined using a JSON file. Foggy monitors resource usage of containers and fog nodes through 
CAdvisor. Foggy uses a self-matching algorithm to match each microservice with the most suitable 
fog node to support maximizing service quality. Placements can be adapted to changing resource 
requirements. 

 

Figure 5: Abstract Mist Layers and Orchestration Circles (Bonomi et al, 2014) 

Großmann & Klug (2017) developed PyMon which is a container monitoring framework 
for fog nodes. Großmann & Klug (2017) observed that a cloud monitoring solution transplanted 
into a fog computing environment is ineffective because this solution does not take into account 
that the fog computing nodes are not as powerful as cloud servers. Großmann & Klug (2017) 
introduced PyMon a lightweight monitoring solution for single-chip computers. At PyMon, the 
collection of monitored data is done via Monit. Monit is an open-source Unix/Linux system 
monitoring tool. Firdhous et al., (2014) explained that Monit can request system information and 
send monitoring data via HTTP. Monit is installed on every worker node. Monit can periodically 
collect host information and generate XML files. However, Monit doesn't support monitoring 
container information, so the authors modified Monit with additional information that includes the 
container's CPU and RAM usage, image name, and state. Host information and additional container 
information are included in the XML file. XML files are periodically sent to the manager's server 
via HTTP. On the server (master node), PyMon provides support for data aggregation and filter 



  
 

Journal of Technology Informatics and Engineering 
Vol.1, No.1 April 2022 
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 01-29 
 
 
processing. The pre-processed data is entered into a Postgres SQL database on the management 
server for long-term storage. 

After completing PyMon, Großmann et al., (2017) conducted a PyMon evaluation study. 
The purpose of the evaluation study is to verify whether PyMon and monitoring tools in the cloud 
computing field can adapt to the fog computing environment and whether future research directions 
should continue to focus on reducing hardware overhead. Therefore, they selected two tools 
commonly used in the field of cloud computing monitoring and deployed them in the fog 
computing environment. The tools are Prometheus and CAdvisor. Prometheus, as the data 
aggregation server used on the manager node, corresponds to the MonitCollector role in PyMon. 
CAdvisor in the Prometheus stack is responsible for gathering hardware information on worker 
nodes. This is similar to using Monit in PyMon. The evaluation results are shown in Table 1. 
Compared with the implementation algorithm described in Yigitoglu et al. (2017) and the machine 
learning model in Jalali et al, (2017) this approach to using simple rules can reduce the 
communication burden between clients and servers by applying rules to filter monitoring data. 
Using rules can be used to reduce monitoring overhead, but it also means that large amounts of 
data cannot be stored for the long term. In some service orchestration algorithms as described by 
Yigitoglu et al, (2017) there is a reference to container orchestration based on information from the 
service layer. Therefore, the framework proposed in this study seeks to integrate service-level 
information and computing resource information into the same framework. Prometheus has lower 
CPU consumption than PyMon. The PyMon developers suggest that with active open-source 
community development, open-source software can be used to monitor containers on mist nodes. 

 

Table 1: Comparison of PyMon vs Prometheus 

White-box live monitoring refers to directly collecting performance metrics such as the 
number of requests, amount of concurrency, and average response timeout. This is done by 
inserting code in the service that allows assigning a unique trace identifier to requests. This enables 
request tracking. Black box direct monitoring does not require any code to be entered into the 
application for monitoring purposes. The black box service log collection solution for 
microservices in this study is proposed, and the “Metro Funnel” tool in this study is developed to 
sniff HTTP request information on each service port. This research is not targeted to measure the 
performance of microservices in containers or error detection. However, this black box monitoring 
method can be used to improve service performance by increasing the number of microservices 
replicas based on request timeout rate analysis. Use black box monitoring to monitor the number 
of requests per microservices, response times, and dependencies between microservices. The 
centralized gateway collects and routes all microservices requests and responses. Any requests 
from clients or information communication between containers will be routed by this centralized 
gateway. Through the information collected, the framework can provide information, such as the 
number of requests per microservices, response times, and dependencies between microservices. 
To implement this centralized proxy monitoring architecture, they modified the ZUUL Netflix 
gateway to route requests between microservices. The experimental environment is for Docker 
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containers and the HTTP communication protocol. ZUUL collects, aggregates, and filters 
microservices communication information by reading HTTP headers. 

Computing Resource Virtualization 

If a cloud provider customizes different hardware for each user, it will cost a lot of 
manpower, time, and resources. Therefore, cloud providers solve this problem through resource 
virtualization. Compute virtualization technology uses virtualization management software 
(Hypervisor or Virtual Machine Manager) to separate physical server hardware resources from 
upper-layer applications to form a unified pool of computing resources, which can then be flexibly 
allocated to logically isolated virtual machines or containers for shared use. The advantage of this 
virtualization technology lies in dynamic computing resource planning (Arora et al, 2011), 
increased utilization, manageability, and reliability (Uhlig et al, 2005). Currently, the two widely 
used virtualization implementations are through virtual machines or container technologies. 

Containers and Virtual Machines 

Container technology (Jimenez et al, 2015) refers to application virtualization, where each 
application has its own independent user space. The container includes the code, system tools, 
libraries, and environment configuration required by the applications hosted in the container. 
Deployment of container technology allows developers to focus more on developing and deploying 
applications rather than deploying a development environment over and over again. The 
components needed to run the program are packed into an image file. Image files can be loaded 
into the container for execution. This reuse and convenience greatly increase the flexibility and 
scalability of services. Containers can also download image files from image file storage 
repositories (such as Docker Hub) for fast deployment. Virtual machines are different from 
containers in that virtual machines can use a different operating system than server operating 
systems. The virtual operating system will run like any other program on the server. A virtual 
machine (VM) can virtualize different operating systems on a host to adapt to the different system 
requirements of the system environment. However, a unique feature of container technology is that 
all applications in a container can use the same container engine, avoiding consuming system 
resources by requiring its operating system. Container creation does not need to allocate fixed 
memory and disk storage like virtual machines Sharma et al, (2016). Therefore, compared to virtual 
machines, containers are lighter, and the utilization of the computing resources of the host hardware 
is more flexible and dynamic Sharma et al, (2016). In terms of data, the minimum amount of RAM 
resources used by a container can be as small as 5MB while the smallest resource usage required 
by a virtual machine is 250MB. 

Container Orchestration 

Containers placed on the same host share the same operating system. To run multiple 
containers efficiently on a single host, no container starves CPU, memory, or other network I/O 
containers. Thus, as the number of containers increases, the complexity of resource management 
also increases. Container orchestration tools are needed to manage containers and applications. 
Tools widely used in the industry include Docker Swarm and Kubernetes. Docker Swarm is the 
official native management tool for Docker containers. By using it, users can package multiple 
docker servers into one large virtual docker cluster to quickly build container platforms. Kubernetes 
Sayfan (2017) is a container platform designed by Google. Kubernetes has more features such as 
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alerts and visualizations. At the 2017 Docker Conference, Docker announced that it will provide 
native support for Kubernetes. Research by Großmann & Klug (2017) shows that Kubernetes uses 
more resources than Docker swarm. However, Kubernetes provides more features. In short, Docker 
Swarm is known for its native lightweight deployment, and Kubernetes provides more robust 
functionality. The tools necessary for management include container monitoring and container host 
systems. Management tools are usually integrated with tools designed for container monitoring. 

Microservices and Tracking 

The concept of microservices is intended to adapt to a more dynamic and flexible 
computing resource environment Nadareishvili et al, (2016). Microservices is a software 
architecture consisting of multiple independent services where each service is responsible for a 
single function. The idea is not to develop a large monolithic application but to decompose the 
application into small interconnected microservices. One microservice completes certain functions, 
such as passenger management and order management. Each microservice has its business logic. 
Some microservices also provide API interfaces for other microservices and application clients. 
Compared to monolithic applications, microservice architecture has the advantages of low coupling 
and better maintenance. In a monolithic application, small changes can affect the deployment of 
the entire application. Modification of one module may require coordination of other modules. This 
type of maintenance requires the programmer to have a sufficient understanding of the entire 
application architecture. In a microservices architecture, changes made by programmers to one 
microservice will not affect other microservices. 

The disadvantage of today's microservices architecture compared to monolithic 
applications is troubleshooting. When one application fails, system maintainers can solve the 
problem by reading the application logs on a single server. Each microservice has its log storage 
format and method, and each microservice can be deployed on a different server. This feature 
increases the cost of troubleshooting system failure points. Compared to the traditional monolithic 
service system, in a microservices architecture, user requests may need to access multiple 
microservices deployed on different servers. In a monolithic system, the system architecture is 
relatively fixed and stable. If errors and abnormalities are found by real-time monitoring, system 
administrators can quickly find abnormal servers and deal with them quickly. With microservices, 
components in different containers may have multiple replicas as working instances, and these 
replicas are deployed on different machines. This layer of low-coupling system architecture has 
the advantages of flexibility and scalability in large cluster deployments. However, these 
distributed deployments present challenges for monitoring and tracking. Each request can be 
forwarded between multiple stateless microservices via API interaction, and these microservices 
can be distributed across different servers. Therefore, in the industry, there are also many service 
layer monitoring tools developed to track the performance of microservices such as ZipKin 
(Chandran & Walvekar, 2014), Dapper (Sigelman et al, 2010), Dyna-trace (Mayer & Weinreich, 
2017), etc. The approach of this tool is to assign a trace identifier to each request being tracked. A 
complete microservices trace chain record is created by combining records with the same tracking 
identifier together. The limitations of this method are that the system administrator needs to have 
a certain level of understanding of application design and this approach requires modifying the 
service code. This method is called white box monitoring, that is, the service function and system 
monitoring function are combined into one. From a development perspective, this increases the 
difficulty and complexity of development. Developers not only need to pay attention to business 
algorithms, but also need to understand DevOps monitoring, communication, and logic 
Nadareishvili et al, (2016). On the other hand, when system maintainers and developers are from 
different parties, this usually increases the difficulty of operation and maintenance. 
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Microservices in Containers 

Because containers and microservices are dynamic and flexible, this combination is 
popular. Cockcroft et al (2014) believe that containerized microservices can multiply dynamic and 
flexible characteristics, making microservices more elastic and flexible. IoT applications are 
characterized by their integration with sensor data. Sensor data can be shared by multiple 
applications as well as multiple data analyses. Microservices can be replicated or have additional 
resources allocated as needed. Containers are often used to host microservices. Under this trend, 
the deployment of fog nodes at the edge of the network as gateways for IoT devices can solve 
latency problems effectively. However, the resource-limited nature and diversity of these gateways 
pose challenges to the development of widely applicable applications. Cziva et al. (2017) focused 
on this issue and demonstrated through experiments that deploying gateways through containerized 
services can improve the computational performance of IoT gateways. On the other hand, due to 
lower computational resource consumption and faster container deployment speed, container 
deployment is more flexible and faster than virtual machines and can adapt to dynamic user needs 
more quickly to achieve real-time expansion. Scaling and migration. 

Virtualization of Container and Network Functions 

As the number of network middleware devices that are deployed on the network increases. 
Issues such as high development costs, rapid updates, and difficulty in upgrading and deploying 
based on specific hardware are becoming increasingly prominent. These middleware or proprietary 
services often require specialized hardware to work with. Network function virtualization (NFV) 
aims to change the current situation faced by network operators. Network function virtualization 
(NFV) is a method of virtualizing network services (such as routers, firewalls, and load balancers) 
that have traditionally run on proprietary hardware. Currently, industry and academia tend to use 
virtual machine technology to implement NFV platforms (Cockcroft et al (2014)). With the 
emergence of container technology, containers are considered a technology to implement NFV in 
the future. Cziva et al. (2015) have conducted in-depth research using containerized NFV. Cziva 
et al (2015) believe that with the increasing number of users and new mobile devices, 
telecommunication service providers (TSP) often face the problem of low resource utilization, tight 
coupling with specific hardware, and lack of a flexible control interface and cannot support many 
mobile devices. applications and services. Therefore, the authors propose a framework for 
implementing NFV with containers instead of Virtual Machines (VMs) at the network edge. 
Because containers take up fewer hardware computing resources and are more flexible, TSP can 
reduce unnecessary use of the core network, better solve error problems, and provide users with 
location-aware and transparent services. 

Service Network 

When a container is selected as the environment running microservices, the service net is 
considered a way to supplement the tracking of microservices in the future. The service network 
monitoring solution is to use an associated traffic proxy called a "sidecar" for each container. All 
communication services related to the container will be processed through the sidecar. The service 
mesh architecture is relatively simple and consists of a two-tier architecture. One of them is the 
data layer (data plate). This layer deploys sidecars for each container. The sidecar can fully 
represent the request and response associated with the container. This task includes data packet 
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processing, forwarding, routing, load balancing, monitoring, etc. These sidecars can communicate 
with each other, and these communication records can be used to track microservices requests. The 
other layer is the control layer (control plate). This layer does not directly parse data packets, but 
communicates with the sidecar from the data layer, collects information from the data layer, and 
defines distribution/routing policies. In addition, the control layer can provide system 
administrators with APIs to facilitate configuration, monitoring, visualization, continuous 
integration, and deployment. 

This architecture divides service communication, allowing developers to focus more on the 
logic of the service code. The related management and control functions from the communication 
and network layers are passed down to the infrastructure layer. In this design, service and 
communication codes are completely separated. The integration of sidecar auxiliary agents across 
distributed microservices systems will make the entire system less cumbersome and increase the 
difficulty of operation and maintenance. Since all information is proxied by the sidecar instead of 
communicating directly with the container, this will cause a slight delay. In some business 
scenarios, this kind of delay is intolerable. In addition, the current research on service mesh is all 
in the cloud environment without considering the characteristics of fog computing. When 
computational performance is limited and configuration processes need to be simplified, whether 
service mesh is applicable has not been well studied. 

In the currently known literature, the current research focus of container monitoring in the 
fog computing environment is based on the system architecture, which mainly considers the 
flexibility and scalability of the system. Therefore, the monitoring requirements put forward by 
this fog computing container monitoring tool are related to the system, such as flexible data 
backend, acceptable performance overhead (Großmann & Klug, 2017), geographic awareness, etc. 
This type of work considers service dynamics in a fog computing environment with current 
research focusing on indirect monitoring at the hardware level for CPU, RAM, and Bandwidth. 
Compared to fog computing, a cloud computing environment has a fixed server capacity in a stable 
data center environment (Firdhous et al, (2014)). Cloud servers are usually more powerful and can 
provide more computing resources. There has been no work to determine whether black box 
monitoring methods in a cloud computing environment can be adapted to a fog computing 
environment. Among the four methods mentioned so, this is not a completely black box boxed 
microservices solution. Service mesh growth to computing resources will increase with the growth 
of the number of containers, which is not conducive to service scalability. Some representative 
service nets, such as AnyPoint Service Mesh, have a minimum hardware requirement of at least 
8GB of RAM. Netflix ZUUL also has hardware requirements. This requirement is still too high for 
devices such as the Raspberry Pi and Arduino, which represent computing power suitable for a fog 
service device. In fog computing, it may have different system architecture from cloud computing, 
different computing resource constraints, and different application user scenarios. 

Experiment Objectives and Assumptions 

The two goals of this research experiment are to verify the feasibility of the framework and 
evaluate the CPU overhead of the monitoring framework. This is to evaluate what kind of 
information can be collected from the monitoring framework by simulating a real microservices 
application environment. In addition, JMeter is used to simulate user actions, which send requests 
to the server, assuming the user knows the server's IP address. In a real environment, the user will 
not directly access the server's IP address. Application providers typically allow users to access 
domain names and then use a request proxy tool such as Nginx to forward user requests to selected 
servers. The framework proposed here is only concerned with monitoring information after the 
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server has received a request. Therefore, the test used to send requests directly to the server is 
JMeter. 

MONITORING FRAMEWORK ARCHITECTURE 

Monitoring the run-time behavior measurement of applications consisting of one or more 
microservices deployed in a container that can be deployed across multiple mist nodes. The 
framework assumes a black-box approach to monitoring. For each container, hardware resource 
usage and performance are monitored to determine when microservices need to be replicated and 
where services can be successfully replicated. 

Network Connection Information 

Each service handles requests by performing one or more operations. Request tracking is a 
method used to profile and monitor applications built using the microservices architecture. Request 
tracking helps determine where failures are occurring and what is causing poor performance. 
Network connection information can be retrieved by analyzing network traffic packet headers from 
the application and transport layers. Traffic packets are parsed to extract network connection 
information. 

Table 2 Table of Microservices Tracking Metrics 

 

Hardware Usage Measurement 

Memory and CPU usage are considered the two most important pieces of information. In 
fog computing, sufficient network bandwidth is essential to minimize service delays, and therefore 
there is a need to aggregate the network traffic throughput of each container. The methods of 
gathering hardware and network traffic information differ. Network traffic information is passive 
because network tracking information is generated each time a client sends a request. Hardware 
monitoring is proactive. The monitoring agent periodically collects hardware consumption from 
the container. A scrape cycle is defined as the time interval between two captures of the container 
resource usage information which is referred to as a scape cycle. Scrape cycles usually range from 
5 seconds to 1 minute. Each stroke provides the following information: 
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Table 3 Table of Hardware Metrics 

 

Derivative Information 

The information shown in Table 2 and Table 3 is stored in the database. This information 
can be used to obtain service level information through different request methods to adapt to 
different needs. The fog node architecture consists of several compute nodes. One of these compute 
nodes serves as the local manager and the rest are used to host microservices. 

 

Figure 6: System Architecture 

Figure 7 shows the monitoring system architecture. Each worker device hosts a monitoring 
agent. The monitoring agent is used to collect, filter, and aggregate measurement data that is 
processed by the monitoring agent to be sent to the manager server in the mist node. On the 
management server, the data stored can be used for management applications eg, visualization, 
making resource management decisions, and identifying performance bottlenecks. Each worker 
device has an internal load balancer. The purpose of an internal load balancer is to distribute client 
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requests to different containers. Internal load balancing is provided by a container management 
tool. 

Monitoring Agent 

Each worker device hosts a monitoring agent that is used to collect, filter, and aggregate 
measurement data. This monitoring agent will use existing packet sniffing tools to monitor data 
packets to and from the internal load balancer. The data processed by the monitoring agent will be 
sent to the manager server in the fog node. The processed data is stored in the database which is 
deployed on the manager nodes. On the management server, stored data can be used for 
visualization, making resource management decisions (e.g. container migration or replication), and 
identifying performance bottlenecks. The management application can query the database for 
monitoring information of the running nodes. 

Internal Load Balancer 

With container management tools single microservices usually have multiple replication 
instances packaged in containers. To assign requests to these replicas from clients in a balanced 
way, the container management tool provides a module to process all requests from the client, then 
forward the client requests to different replication containers according to the distribution policy. 
In Docker Swarm, this module is called an ingress sandbox and in Kubernetes, it is called an 
internal load balancer. Each server has its module. The module contains information on all replicas 
for the cluster, including replicas on other servers. The module responsible for these requests is 
known as an internal load balancer. To be more specific, whichever server in the cluster receives 
the request, the internal load balancer of the server that receives the request processes the request 
and forwards it to the replica. Replicas can be on the same server or other servers in the cluster. 
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Figure 7 Internal Balancer in the container orchestration tool 

Each container has its independent network namespace consisting of IP addresses and 
network interfaces. The packets received and sent by each container can pass through different 
network interfaces. If a monitoring agent monitors the network namespace of every container and 
every network interface, there is a need to create threads for each container to monitor network 
information in different network namespaces. This processing method increases thread and 
computation costs (resulting in additional CPU usage) due to an increase in the number of 
containers. This design is detrimental to system scalability. With an internal load balancer, there is 
a network namespace that is shared by all containers. Therefore, instead of using multiple threads 
to monitor all containers, the monitoring agent monitors the internal load balancer to collect 
network request information from all containers. 

Microservices Tracking Monitoring  

To support tracking microservices, it requires information on the sender of the request, the 
recipient, the time it was sent, the container that responded to the request, and the response time. 
Microservices trace monitoring is used to determine how long it takes the container to respond to 
a request after receiving the request. This information comes from multiple packets sniffing that is 
monitored by the packet sniffing tool in the monitoring agent. The information needed for tracking 
often comes from multiple sniffed network packets. Therefore, the monitoring framework must be 
able to collect and analyze several interrelated packages and integrate this information. 

Request Flow in Internal Load Balancers 

In this study, tracking consists of the data presented in Table 2. When a client sends a 
request to a server, the internal load balancer can generate four pieces of information as shown in 
figure 8. 

Package Pair 

After collecting the information described in the previous sub-sections, the monitoring 
agent installation module needs to find the relationship between the corresponding pieces of 
information and generate one complete network tracking information as shown in table 4. With 
four pieces of information as shown in figure 8 communication between fog nodes and clients is 
defined as external traces, which consist of requests sent by clients and responses from internal 
load balancers. The request consists of the requested URL and the request method (eg, GET, 
POST). An external trace consists of the following: a client request to the internal load balancer, 
the IP address of the client and the internal load balancer that received the client request, a 
timestamp recorded after receiving the request, and the internal load balancer's response to the 
client. The communication between the internal load balancer and the selected container in the fog 
node is referred to as an internal trace, which consists of the client request forwarded by the internal 
load balancer and the response returned by the container. The internal trace consists of the 
following: internal load balancer requests to the selected container, the IP address of the internal 
load balancer and the selected container, the timestamps of the internal balancer that sent and 
received the request/response, and the selected load balancer. response to clients. Table 4 
summarizes the source and destination IP addresses for requests and responses. Lines 1 and 4 
represent the requests and responses that make up the external trace. Lines 2 and 3 represent the 
request and response pairs that make up the internal trace. External and internal traces differ on the 
IP address but not on the requested TCP packet and URL. 
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Table 4 Source and Destination IP Addresses of Tracing Information 

Line 2 represents the internal load balancer that forwards client requests to the selected 
container. It contains the same information as the line except for the IP address. In line 2, the source 
IP address is for the internal load balancer on the server receiving the request, and the destination 
IP address is for the selected container. Line 3 represents the response from the selected container 
to the internal load balancer and is the same as found in line 4 other than the IP address. This 
research uses the source IP, source port, destination IP, and destination port of the HTTP header in 
the application layer as identifiers to pair the corresponding request and response together. When 
a paired trace is an external trace, the source IP address is the client, and the load balancer is internal 
on the server receiving the request. If pair tracing is internal tracing, the source IP address is the 
internal load balancer on the server receiving the request, and the destination IP address is the 
selected container. 

 

Figure 8 Trace the couple's relationship 

Internal traces and external traces cannot be linked to the information in the HTTP header 
by matching the HTTP header information from the application layer. Requests and responses are 
matched by source and destination IP addresses. However, the sender and destination may have 
multiple requests and responses. HTTP headers cannot identify which request corresponds to which 
response. This research found that when the internal load balancer forwards client requests, the 
internal load balancer only changes the IP address in the HTTP Header but not the TCP packet 
information from the transmission layer. Therefore, the corresponding external traces and internal 
traces have the same TCP packet information/can combine internal traces and outer traces by 
comparing the information from the transport layer (such as ack, seq) to form a complete trace 
chain. The matching relationship between this information can be seen intuitively in Figure 9. 

Track Monitoring Work Process 

The monitoring agent on each server needs to get the network address used by all the 
containers in the cluster. This information is placed in a table with a mapping relationship between 
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the container identifier and the container IP address. This way, when the monitoring agent has all 
the information it needs to search, it can use the mapping table to determine which container the 
search is associated with. If the IP address sending the request is known in the mapping table, then 
this information is communication between containers on the mist node. The monitoring agent will 
mark this information as internal container communication within the cluster and label requests 
with container identifiers for the following processes as shown in figure 10. This study uses a 
dictionary data structure to temporarily store requested information. Request information includes 
the request sending IP address, requested URL, requested port, and timestamp. If the request is a 
known container within the container, the information will also include the request sending 
container identifier. The dictionary key is the IP address of the request sender. This dictionary data 
structure is called a pending dictionary. When the monitoring agent collects response information, 
it finds matching requests in the pending dictionary, takes them out of the dictionary, and stores 
them in the database for long-term data storage. The inner trace and outer trace do not require real-
time processing. To reduce the consumption of computing resources from real-time monitoring, 
this check does not match inner and outer traces in real-time. System administrators can use TCP 
packet identifiers to match in and out traces. 

 

Figure 9 Monitoring Agent Workflow 

Hardware Data Processing 

To reduce the amount of monitoring data sent to the manager node, monitoring agents on 
the work node can filter. Data is filtered based on parameter settings that control the Scrape interval 
of hardware data. Swipe intervals range from 5 seconds to 30 seconds. When the scrape interval is 
too short, the monitoring agent will consume too many computing resources due to excessive 
computation, thereby affecting the quality of other services. When the scraping interval is too long, 
the data being monitored may miss some of the data generated during the interval. Therefore, the 
specific interval period must be determined by factors such as the purpose of monitoring and the 
computing power of the device. 

Discussion of Design and Novelty 

The design in this study focuses on monitoring network information flow using black box 
and service net approaches and this can represent two typical ideas in black box microservices 
monitoring. The service-mesh method is not implemented at the place where the data is generated 
but is prepared by a centralized, independent proxy gateway. The advantage is that the monitoring 
task is completely separate from the worker nodes in the cluster. In this way, worker nodes are not 
affected by monitoring tasks. Expanding microservices will not significantly increase monitoring 
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task overhead. On the other hand, all monitoring, analysis, and load balancing will be done by the 
server where the gateway is located. This processing method has very high requirements on the 
computing performance of the gateway server, and in the fog computing environment. This 
processing method concentrates all request information to a single point, which can easily lead to 
single-point failure problems. This potential hazard reduces the fault tolerance of the entire system. 
Besides this method can also minimize the impact on services and code (one collector per 
container), but also impact system scalability. Each additional container will bring some additional 
system costs. The described method using proxies can be considered to affect the forwarding of 
service requests and concentrate information to the same point (one collector per cluster). 

System targets and limits 

The system provides service-level data and indicators to system administrators or system 
orchestration algorithms. In the current fog computing container monitoring, all indirect 
monitoring can only obtain hardware information about the container, such as CPU usage, RAM, 
etc. When a service level fault occurs in a service, it cannot be detected by indirect monitoring. 
These error scenarios include response times that are too long, timeout levels that are too high, and 
too many error responses. This system does not replace white box monitoring. Although service 
level tracking is already designed for the system, request link monitoring similar to white box 
monitoring is not achievable. 

RESULTS AND EXPERIMENTS 

Docker Swarm and Ingress Sandbox 

In Großmann & Klug (2017) the functionality and overhead performance of Docker Swarm 
and Kubernetes are compared. The results show that docker swarm consumes fewer computing 
resources, but also supports fewer container orchestration functions than Kubernetes. Considering 
that the environment in this study is fog computing, and servers are often large single 
microcomputers with relatively weak computing performance, this study chose Docker Swarm as 
the container orchestration job. With Docker Swarm, internal load balancing is implemented by 
the Docker Mesh routing mode. Within the design framework of this study, all servers on the mist 
node belong to the docker cluster. This distribution policy means that every service that joins a 
docker swarm cluster has a docker swarm load balancer, which is responsible for monitoring all 
ports of the service. When the internal node balancer catches a user request, it forwards the request 
to a container called the ingress sandbox via modified DNS forwarding rules. This container is the 
default container created by Docker Swarm. Inbound sandbox containers will distribute requests 
to containers located on different devices across the cluster to complete services according to 
defined routing distribution rules. The monitoring tool developed should obtain network traffic 
information from all containers on the server by monitoring the incoming sandbox containers. For 
this reason, when running the monitoring agent, the system network namespace must be changed 
to be consistent with its inbound sandbox so that the monitoring agent can access all incoming 
sandbox container network traffic. 

Monitoring Agent Implementation 

In developing the monitoring agent, Golang was chosen as the implementation language. 
The reason for choosing Golang is that it has superior features in system development and 
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distributed environments. Golang is also binary compileable making it easy to quickly deploy 
monitoring tools on different servers. The monitoring agent uses the libpcap library to sniff network 
packets that are passed through their inbound sandbox. Each network packet will be analyzed 
through the GoPacket Library. The monitoring agent has a dictionary indexed by sending IP and 
port. If a network traffic packet contains request information, the monitoring agent temporarily 
stores the request in a dictionary; if the network traffic packet contains response information, the 
monitoring agent will match the appropriate request from the dictionary and generate the complete 
trace information. 

Backend Implementation 

As a back-end research database II uses MySQL on a local management server to monitor 
data storage. This research also implements Grafana on the local management server as a tool for 
monitoring data visualization. System administrators can customize the dashboard of the data they 
want to monitor according to their needs. 

EXPERIMENT 

Experimental Environment - Server Deployment 

Raspberry Pi (Bellavista et al, 2017) is considered a viable fog node component device. 
The Raspberry Pi is a single-chip microcomputer that provides relatively lower computing power 
at an inexpensive cost. These cost-effective features also make the Raspberry Pi a strong 
competitive advantage in future large-scale Internet of Things deployments. Experimental 
environment using four Raspberry Pis for the fog node. Table 4 presents the specifications of the 
Raspberry Pis. 

Table 5 Raspberry Pi Specifications 

 

The Raspberry Pi with the most RAM is appointed as the manager. The manager node hosts 
the request sniffer, MySQL database, and the Grafana visualization tool. Another Raspberry PI is 
set up as a worker and hosts the sniffer requests. Although this Raspberry Pi differs concerning 
RAM, it shares the same 64-bit Quad-Core Processor. The Raspbian operating system is installed 
for every Raspberry Pi. Raspbian is based on the Debian system and optimized for Raspberry Pi 
hardware. Raspberry Pis communicate with each other via Wi-Fi. A fixed static IP is configured 
for each Raspberry Pi to facilitate the identification and analysis of communication information 
between Raspberry Pi. 
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Figure 10 Microservices Dependencies 

Application of Microservices 

To verify the feasibility of the monitoring system, this research develops three related 
containerized microservices. The three microservices are analyzer, data_provider, and Client API. 
data_provider simulates collecting data from sensors. The analyzer is used to process the collected 
sensor data in real-time. It is simulated by using a loop that performs random computations. The 
Analyzer Container is designed to have high CPU usage. Client_API is primarily responsible for 
processing client requests centrally. This service uses the RESTFUL interface, which can obtain 
different services and data content by sending different HTTP requests. There is also a dependency 
relationship between these three services that call each other's APIs. The relationship is shown in 
Figure 11. 

Table 6 Microservices API Paths 
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Table 8: Application of Containers 

 

Microservices are placed into container images and uploaded to the Docker hub. The 
microservices are then deployed on the four Raspberry Pi devices in the Raspberry Pi cluster via 
Docker Swarm on the manager server. For the Client_API microservices and data analyzer, there 
are three replicas. For microservices data_provider there are five replicas because these 
microservices are intended to receive sensor data. Containers use different network interfaces for 
communication, namely the bridge network and the access network. The inbound network is used 
to distribute requests to the selected containers. Whenever the internal load balancer receives a 
request, it can identify the container by its incoming IP address. The bridge IP network is used for 
containers to communicate with Docker Swarm. When the container is the sender of the request, 
the internal load balancer can identify the container by the connecting IP address to the selected 
container. The internal load balancer is configured to be able to query this required information 
from the docker swarm directly so that it can identify each request to each container. However, the 
system in this study does not have this information to match containers with IP addresses. 
Therefore, the monitoring system will initialize the mapping table to match containers with IP 
addresses as Table 6 shows. 

Data visualization 

In this research, Grafana is used for data visualization. Grafana is connected to MySQL 
Database. The data is used to monitor the dashboard in real time. 
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Figure 11: Real-Time Monitoring Dashboard 

Monitor containers 

Figure 12 shows the Grafana dashboard which contains information on CPU usage. System 
administrators can easily get real-time CPU information, configure alerts, and refer to this 
information for real-time container management. Figure 13 shows a line graph of memory usage. 

 

Figure 12 Real-Time CPU Monitoring 

 

Figure 13 Real-Time RAM Monitoring 
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By combining numbers 13 and 14 it can be seen clearly that the container host of the 
analyzer and data_provider services consumes more computing resources than the container host 
of the client_api service. This is to be expected since the client_api service only provides request 
forwarding and aggregation and thus does not consume more computational resources than the 
other two services. In addition to displaying real-time hardware information, it is also possible to 
configure real-time container requests and average container processing time on the dashboard. 
The information shown in Figure 15 is the requests received by each container in the container 
breakdown. It can be seen that the data_provider service, as the data source of the entire 
microservices system, receives the most requests. Figure 16 shows the average response time for 
each container. Response time is measured by calculating the difference between requests and 
responses. The Client_API service is responsible for forwarding client requests as an intermediate 
gateway, so each Client_API container takes a relatively long time to respond to client requests. In 
the replicas of data_provider and analyzer, and found that data_provider 4 and analyzer 3 are the 
containers that receive more requests, and their response times are longer than other similar 
containers. 

 

Figure 14 Number of Requests from each Container 

 

Figure 15 Response Time for each Container 

Monitoring Communications 

The information shown in Figure 17 is the number of requests between the two containers 
in this figure. To be more specific, the number of requests represents how many requests the 
container is communicating. The y-axis represents the receiving container, and the x-axis is used 
as the sending container. The IP address does not belong to a container that is recognized by the 
monitoring system. 



 
 
 

BLACK BOX APPROACH TO MONITORING CONTAINER MICROSERVICES IN FOG COMPUTING 

24        JTIE - VOLUME 1, NO. 1, APRIL 2022 
 
 
 
 
 
 
 
 
 

 

Figure 16 Communication Dependency Calculation Table 

Figure 22 represents the communication latency between containers. Latency is calculated 
by the difference between the timestamp of the time the packet was sent and the time it was 
receiving the response. 

 

Figure 17 Table of Communication Response Time 
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Figure 18 Service Response Time 

Monitor Microservices 

The chart and information shown above all use the container as a detailed analysis to 
evaluate the working condition of the container. The proposed framework also supports analysis 
with microservices as a breakdown. As shown in Figure 18, the average response time of the three 
microservices combined. As can be seen from the image, client_api takes longer to respond to 
requests than the other two services. data_provider has the fastest response time. The results of this 
data are consistent with the characteristics of the services used. The main functionality of 
Client_API is to receive requests from clients, then send requests to other services, and finally 
collect information from clients. Therefore requests related to Client_API often need to send a 
request to another service, wait for a response, and then reply to the user. Client_API depends 
heavily on other services. Network delays and congestion can easily impact Client_API response 
speed. Data_provider doesn't have a similar problem because it's designed to accept requests from 
two other microservices and provide data immediately. In this process, there is no need to send 
additional requests, or do many complex calculations. The analyzer microservices will first request 
a small amount of data from the data_provider and then perform a small amount of computation 
before responding to the client. 
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Figure 19 Container Response Time 

Performance Overheads 

To analyze the computational resource usage of the framework, the CPU usage of the 
system is collected when the monitoring agent is turned on, and the system's CPU usage is when 
the monitoring agent is turned off. While testing is in progress, no other applications on the 
Raspberry Pi server under test are using system resources except for the monitoring agent and 
docker microservices. Concurrency represents how many clients are continuously sending requests 
to the server at the same time. The overall CPU usage of the monitoring agent system is calculated 
by calculating the difference between the CPU usage when the monitoring agent is turned on and 
the CPU usage when the monitoring agent is not enabled. In each test, the CPU usage of the system 
is continuously collected for five minutes and then calculates the average value of CPU usage is 
over five minutes and fills it in. When the number of concurrent clients is 10, the monitoring agent 
consumes about 6.9% of the system's CPU time. As the number of concurrent clients increases, the 
CPU usage of the monitoring agent also increases. It is also worth considering that the sampling 
method is immature. Due to throughput uncertainty and service complexity, a large number of 
tracking tasks alone will bring a large number of computational requirements. Therefore, to limit 
the encroachment of computing resources with monitoring tools, in white-box microservices 
monitoring tools such as Dapper, their solution is to limit server performance loss by adjusting the 
sampling rate. When the amount of data is too large, the monitoring system will strictly control 
CPU usage, and only sample and monitor microservices within the range allowed by the CPU usage 
limit. Monitoring records are only a small part of all the information. System administrators can 
infer overall system performance by analyzing sample data. The proposed framework collects all 
request information and also completes the real-time analysis, matching, aggregation, storage, and 
visualization. This is undoubtedly a huge CPU consumption. 
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CONCLUSIONS AND RECOMMENDATIONS 

This study discusses how to collect microservices information in a black box in the case of 
fog computing and implements the ideas that arise during research through the framework. The 
initial aim of this study is to obtain sufficient information through comprehensive information 
gathering to determine the operating status, service characteristics, and dependability of each 
container. The proposed solution is to monitor the container black box by monitoring the container 
management tool load balancer. Through experimentation, this study succeeded in showing that 
operational data for visualization that can help system administrators evaluate the status of 
containers that are currently running using the black box approach can be provided properly so that 
system administrators do not need to understand and modify target microservices to collect service 
characteristics from containerized microservices. The method used in this study is also suitable for 
network edges, which can run smoothly on microcontrollers with relatively weak computational 
performance. 

For future research, this study provides suggestions in terms of continuous use of 
monitoring data and system development, whereby the information collected for multiple dynamic 
container deployments, such as dynamic horizontal container expansion and real-time container 
migration can be used. 

1. Part of the framework container management tool code proposed here can be modified to 
provide a quantitative index of real-time algorithms to help optimize load-balancing 
algorithms. 

2. Optimize Framework For Real Production Environment. Considering the database capacity 
issue, future research should consider using a time series database such as Influx DB12 for 
storage, and only storing data for a certain period (a week). 

3. This framework should be further developed to support more service layer network 
protocols. The common communication protocols of the IoT environment represented by 
the MQTT protocol must be studied extensively. 
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