

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022

e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

Received Maret 05, 2022; Revised Maret 20, 2022; April 13, 2022

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

Sulartopo1, Dani Sasmoko2, Zaenal Mustofa3, Arsito Ari Kuncoro4

Universita Sains dan Teknologi Komputer

Abstract

The special component of malicious software analysis is advanced malicious software
analysis which implicates interested the main framework of malicious software that can be
executed after executing it and aggressive malicious software investigation depend on inquisitive
of the practice of malicious software after running it in a composed habitat. Advanced malicious
software analysis is usually performed by contemporary anti-malicious software operating systems
using signature-based analysis.

The purpose of this research is to propose also decide a DNN for the progressive
identification of portable files to study the features of portable executable malicious software to
minimize the occurrence of distorted likeness when aware of advanced malicious software. The
model proposed in this study is a NN with a Dropout model contrary to a resolution tree model to
examine how well it performs in detecting real malicious PE files. Setup-skeptic methods are used
to extract features from files. The dataset is used to train the proposed approach and measure
outcomes by alternative common malicious software datasets.

The results from this study illustrate that the use of simple DNNs to study PE vector
elements is not only efficient but more fewer system comprehensive than the traditional interested
disclosure approach. The model proposed in this study achieves an A-UC of ninety-nine point eight
with ninety accurate specifics at one percent inaccurate specific on the R-OC curve. For shows
that this model has the potential to complement or replace conventional anti-malicious software
operating systems so for future research, it is proposed to implement this model practically.

Keywords: Malicious software detection, DNN, Portable Executable

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

81 JTIE - VOLUME 1, NO. 1, APRIL 2022

INTRODUCTION

Since the emergence of the anti-malicious software operating system, an increase in
sophisticated malicious software categorically calculated to outsmart this software has in turn led
to an inquiry into a higher progressive disclosure approach. The concept of malicious software
detection relates to the investigation assassinate files to determine whether malicious is resolved.
Malicious software analysis or malicious software disclosure can be done in two ways:
progressively and dynamic. Progressive malicious software disclosure is the action of correlating
binary files without running them. This can involve deploying a complete file and being able to
inspect each element, adopting a dismantler to turn builder it, or turning it into accumulation code
to check the flow Sikorski & Honig, (2012). “The engineering can still be extended to the source
code of the software if it is available” Manuel et al, (2012). “DMS is the 1st channel of defense
contrary to malicious software used by all anti-malicious software”. Effective malicious software
revelation uses nature analysis while malicious software is fuctioning to resolve malevolent alert,
this scheme of analysis is usually resource-intensive and can be circumvented in several ways.
These analysis schemes are usually resource intensive and can be carried out in a several of ways.
“The debugger can also be used to analyze system calls or other behavior patterns that cannot be
detected using black-box testing” Dilshan (2016).

The outlook of this research will only focus on advanced malicious software detection.
Machine Learning (ML) has long been used to classify data with complex characteristics that
cannot be determined easily using mathematical functions. DNNs are currently used in a variety of
different applications including data allocation, data forecasting, image perception, NLP, and so
on. The versatility of NNs are accessible, but computationally the process of obtaining certain
results is very costly.

Until now, the loss of opportunity of labeled datasets termed for managed study has
different evolution in using ML or DL for malicious software revelation. Igor et al, (2013) proposed
“OPEM as an advanced-aggressive model to use ML to detect anonymous malicious software”.
They propose analyzing operational code obtained from disassembling executables and identifying
their implementation tracks to decide malicious intent. Similarly, “a dynamic malicious software
detection framework for Android called DroidDolphin managed to achieve 86.1% accuracy” Wu
& Hung, (2014) accepting energetic malicious software investigation. Both approaches are
commonly calculational accelerated and have defined opportunities for title data.

Destination

The essential purpose of this research is to construct and classify a DNN to advanced ally
analyze compact assassinatable files to analyze them as malevolent. So then, for the purpose, this
research uses a data set that consists of data extracted from harmless and harmless portable
executable files. The trick used for extraction of this portable file is quarrel by Smola, (2009) “to
make a numerical arbitrary of the appearance and standardize the input vector”. Furthermore, this
research model is compared with a similar model proposed previously to handle malicious software
advanced analysis. This research demonstrates a model that simulates a productive application of
a similar approach for further analysis. The entire authority for breeding the expected approach and
its derivatives is provided in this study.

Literature Review

Here many different objections are associated with progressive malicious software
investigation. On this, mainly issues can be resolved using effective malicious software
investigation equally file extortion all along processing timr, obfuscation Code, or executable
encrypted binary files. In this literature review, some of the problems and drawbacks of semantic

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

82 JTIE - VOLUME 1, NO. 1, APRIL 2022

analyzers are explored. Commonly, antivirus software uses signature-based methods to detect
malicious software. “The procedure in the malicious software executable is deciphered to derive a
unique signature that identifies the malicious software which is then compared to a large database
of known malicious software signatures” Ammar et al, (2012) and Philip et al, (2011). Bonfante,
(2007) planned “a control flow chart method to overcome this problem use a graph with nodes for
all commonly used assembly instructions, then use a reduced version of this graph as a signature
to classify malicious software”.

Advanced malicious software investigation has primarily been planned from the aspect of
linguistic investigation and origin code inquiry for distribution. Andreas, (2007) “explain an
approach to obfuscate code from a linguistic investigation by simply adopting hazy specification
constants to obfuscate program control flow”. It serves to highlight a important weakness in
currently existing advanced malicious software analysis techniques with semanticware analysis
where linguistic investigation could defeated by proposing a random method to computing
restriction in actual time. One of the methods mentioned is to use a random seed to generate the
location where the variable is stored or to chain processes and store the variable at a location that
exists in another address.

Christodorescu and Jha, (2006) discussed “Obfuscation Code using encrypting double
annals different times and combining tools for decryption”. This mode of bafflement is simple to
snap during processing time by identification crack files, but to resolve the level of file encryption
without decrypting and analyzing it dynamically first is difficult. “A semantics-based approach that
proposes a metric to measure the similarity between original malicious software code and
obfuscated malicious software code was” Preda et al, (2007). There are many dynamic malicious
software disclosure approaches including call graph analysis Ammar et al, (2012) and identifying
behavior based on triggers Brumley et al, (2008). However, This method is calculational
comprehensive and requires a lavatory framework that can carefully run and analyze malware.

Philip et al, (2011) described that “File packing is a common technique used when bundling
large software in a small and compact package”. Alike bundle procedure commonly affects some
models of encryption that can probably avoid accessible descriptions of malicious software.
Oberheide et al, (2009) “serve that one such tool called ‘PolyPack’ was specifically designed to
prove that packers are an effective method of evading anti-virus and anti-malicious software
operating system”. This bring ten bundles that given data independently, formerly check the bundle
data packers with the best results selected using 10 well-known antivirus scanners. Their study
found that this increased his evasion rate by a factor of 2.58, as opposed to most antivirus programs.

Banko and Brill, (2001) explain that the evidence that ML works finer with bigger sets of
data is build well. A lot of research has been released that uses ML for the classification of
malicious software. Heller et al, (2003) presents “various methods such as effective investigation
of system calls” (Kolosnjaji et al, 2016) “registry access monitoring hidden Markov model-based
analysis” Attaluri et al, (2009) that has “suggested for effective malicious software study”. Kolter
& Maloof, (2004) “using n-grams by combining 4-byte sequences to produce about 255 million
distinct n-grams”. This research focuses on the problem of malicious software classification rather

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

83 JTIE - VOLUME 1, NO. 1, APRIL 2022

than the problem of malicious software detection. This research proposes using the problematic
model to determine which aspects are applicable and using the top 500 n-grams for analysis. This
research introduce how to applying ‘Support Vector Machine’ (SVM), ‘Naive Bayes’, and ‘J48
decision trees’ to analyze data. In this study, a small sample set was used and it don’t have access
to the exact dataset used made it difficult to determine the validity of all outcomes when using
datasets of a larger size. Bagga, (2017) “using approach with Microsoft Malicious software
Classification which is a relatively large data set”.

Raman, (2012) serve “Product Incident Response Team at Adobe Systems Inc” to analyze
malicious software by separating the 7 last practiced appearances from compact executables. The
extracted features are “DebugSize, ImageVersion, IatRVA, ExportSize,
ResourceSize, Virtu-alSize, NumberOfSections”. In each dataset is overall
100K malicious executables and 16K malware was used for the experiment. Quinlan, (1993)
proposed “Various models were tested using this data, J48 decision tree obtained the best results:
a true positive rate of 0.986 with a false positive rate of 0.057”. The output of tester model liberated
as a free tool for malicious software classification, but the data set is not published to perform any
form of comparative research. Anderson and Roth next tested this trained model contrary to the
dataset and found that it exhibited a false positive rate of 0.53 and a false negative rate of 0.08.

A dynamic malicious software classification model using a DNN called MtNet was
proposed by Huang and Stokes in 2016 (Huang and Stokes, 2016). The dataset used for this study
was provided by Microsoft Corporation and consisted of 6,6M sample files. 2,8M malicious files
and 3,6M good files were extracted from this dataset. The tester features extracted during runtime
file execution consist mainly of his two types of data: System function calls and null-terminated
objects. Feature selection is performed using mutual information reported by Manning et al. (2010)
taking input fitures amount of 50K. The end goal is to first classify malicious software as benign
or harmful, then analyze mischievous software into one of 100 known malicious software families.
The ReLU activation function is used in conjunction with an added dropout layer for better model
performance. Although this model showed impressive results with an inaccurate specific estimate
below 0.07 percent, the loss of opportunity of the analysis data set and the approach code used for
the test made the reproduction of the particular outcome absurd.

Pascanu et al, (2015) “Echo state networks and recurrent NN-based classifier malicious
software also tested for effective investigation of malicious software”. That research establishes
the usable of echo state network-based iterative model with a sigmoid activation function (logistic
regression) for effective investigation of malicious software. The exact input vector is not disclosed
but comes from an API call made by the file over the processing time for execution. The model
achieves a true positive rate of 0.983 with a false positive rate of 0.001. The data set used in this
study is internally sourced and is not openly accessible. The goal of this research is to authorize
that a recurrent NN can be used for effective malicious software study. However, because the sets
of data is unavailable, and the level appropriate to duplicate the prospective model are unavailable,
based on this, the results would be very difficult to verify.

Element Option

ML is susceptible to the aspect set that is used for training. Different research has built
positive aspects that are constructive for the efficient training of ML-based malicious software
classifiers. Divandari et al, (2015) “Extract opcode data from files and use a Markov Blanket
approach to summarize feature sets”. Bilar, (2007) “Since the opcodes themselves constitute a
significant part of the executable, they have been considered a reliable feature for malicious
software detection”. The prospective classical uses the “Hidden Markov Model” for malicious
software classification. Saxe and Berlin, (2015) “introduces a setup-skeptic method to extract

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

84 JTIE - VOLUME 1, NO. 1, APRIL 2022

features from files and the byte histogram approach”. This method is an innovative approach to
extracting byte-as-feature information from a file without requiring information about the actual
function of the bytes and suggests extracting a histogram of all unit values present in a binary file
along with a 2-dimensional byte-entropy histogram to build an understanding of the encryption
potential. or the compression used in the file.

In this research model, a setup-skeptic method to extract an element from a file is used to
accompaniment the header eradication approach in such a way that it can accomplish large
efficiency without the large overhead appropriate to vectorize all bytes in a portable executable.
“The feature quarrel trick has often been cited and used to model machine learning” Weinberger et
al. (2009). Vector input for ML-based models are advanced cant grow in capacity. Therefore, a
method is needed to completely encapsulate large input features into a more manageable advanced
capacity for exercise. The component quarrel deception recommended an approach for definitely
reducing the dimensions of the data is sti;; adequately represents the originally intended data, but
offers linearly separable features to train the model effectively.

Driven Decision Trees and NNs

With recent advances, boosting methods for resolution tree models have been shown to
have equal or better performance than artificial NNs. Roe et al, (2005) explains the method is
relatively easy to set up and works together with a bigger total of variables. Hastie et al, (2009) and
Schapire, (2003) proposed “with the advent of AdaBoost, improved resolution tree models have
successfully moved from binary allocation to multi-category classification”. The approach planned
in this study was correlated to an actual driven resolution tree model for the same data set used for
the model proposed in this study. Caruana and Niculescu-Mizil (2006) “establish that expressed
aim engine, decorated decision trees, and neural nets have proportionate achievement in the most
scheme with variance mainly limited to hyper-parameter tuning”.

Format Portable Executable (PE)

Since its introduction, several improvements have been made for inclusion in advanced
version of Windows, unix uses an format similar to the Windows PE format (ELF). Due to the
limited data available on malicious software running on Unix-based operating systems, the scope
of this work is limited to Windows executable files. However, COFF headers are included in PE
files common to Unix and Windows environments (Kath, 1993). The model proposed in this study
analyzes and completes the appearance copied from the PE file, even if it is malicious.

Root MSDOS

This root is run every time is run in MSDOS situation. Its main purpose is to print a message
indicating that the file cannot be run in an MSDOS situation. The signature added after the MS-
DOS root indicates that the file is in PE format.

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

85 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 11 File Format for PE (Wikipedia)

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

86 JTIE - VOLUME 1, NO. 1, APRIL 2022

Table 1 COFF Structure

Table 2 Machine Type of COFF

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

87 JTIE - VOLUME 1, NO. 1, APRIL 2022

If the machine area is matching with the mark of the computer on which the file is run then
the file can be run on a computer only.

Table 3 COFF Available Attribute Flags

Optional Heading

Files that are considered executable have a further alternative fall. This header serves
instructions to reference the current in the OS. Loaders handle the gassing of shootable files. This
is a must-have for shootable files, but may also current in body files. Alternative heading in body
files are of no use other than increasing the file size. The capacity of the alternative heading is
specified by the “SizeOfOptionalHeader” area in the COFF heading. The illusion in the alternative
heading determines whether the executable is PE32 or PE32+, as shown in Table 4. PE32+
executables allow 64-bit disk space, but cannot exceed 2 gigabytes in size. Standard fields for
alternative headings detailed for each COFF implementation (Windows and Unix). The summary
of the information contained in this section.

 The illusion number indicates whether the file is a normal executable (0x10B), a
ROM image (0x107), or a PE32+ executable (0x20B).

 Linker version to use for this PE file.
 Code region indicates of a “PE file” that consists of the actual software that runs

when the file is run. There may be several such code sections in the file. In that case,

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

88 JTIE - VOLUME 1, NO. 1, APRIL 2022

the header field shows the total capacity of all code sections. Code regions are also
known as .text regions in PE files.

 The capacity of initialized and uninitialized data contained in the file. It is also
referred to as the .data Area of the PE file.

 File entry point address.

Table 4: Alternative heading Illusion Numbers

Table 5: Alternative heading Sections

Windows-specific areas consist of specific information about the Windows environment. It
consists of the OS version, image version, header size, image size, DLL properties, loader flags,
and length of data list. Kath, (1993) explain “Image capacity determines how much memory the
operating system must reserve to run the image”. The data directory provides the location and
capacity of the directory appropriate by Windows. These include but are unlimited to export or
import the tables, source tables, exclusion tables, and othe element.

Area Table

Each area in a PE file consists of an area header. Characterize of the region name, , a total
of rows, virtual content and different pointers (rows, raw data, displacement, and other that.). In
addition to the sections above, PE files consist of executable software code. A file may contain
different sections, but that is beyond the scope of this work.

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

89 JTIE - VOLUME 1, NO. 1, APRIL 2022

Basic data set

Since the approach proposed here is to evaluate the PE files, then to find records containing
PE files marked as malicious is the first challenge. Records that classify malicious software as
malicious and benign are crucial to the treasure trove. The data set is 9 GB and contains 900K tester
samples, including 300K with high risk, 300K benign, and 300K cases that are unable. It also
consists of 200,000 test patterns. This has also published the source code used to create this dataset.

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

90 JTIE - VOLUME 1, NO. 1, APRIL 2022

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

91 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 2: Example JSON

PROPOSED MODELS

Three main components of this approach are “Feature Extraction and Quarrel” (FEQ),
“Scaling and Normalization” (SN), and “Neural Network Classifier” (NNC). To implement this
research model using Python because of its integrity and resilience of adoption in machine learning
applications Oliphant, (2007). Collet et al, (2015) describe the Nvidia CUDA architecture by
Nickolls, (2008) as utilized parallel computing with fast speed using the “Keras library” to
implement the proposed NN model.

FEQ

The main components of the PE file extracted to track the model is “Resolve Information”
and “Basic Byte Information”. The sets of data used in this research approach give a beneficial
caliber to cutting the vital data from PE file. In total, the model used is 2351 input vectors for
classification.

Resolve Information

“Each PE file consists of header information, these features are extracted in python using
the LIEF library to parse PE files” (Thomas, 2017). Not all numeric is not always of the same size
in this material. This research model uses a fixed-capacity input vector for exercise. It means, all
of aspects cutting must be of default size before being used to train the model, to achieve it, “the
module from the sci-kit-learn library FeatureHasher” Pedregosa, (2011) is also “used to
implement the element quarrel trick” Weinberger et al, (2009) along a positive total number of bins
per element header and 5 sets of features were extracted from the PE file

Common features obtained from PE files include:

 Virtual size
 Imported function
 Exported function
 The presence of a debug section

 Resource
 Relocation

 Number of Symbols
 This is the basic information obtained from the PE header.

Header Information

 Specific information from the headers in the PE file is obtained, and from the COFF header
the following information is obtained:

 Timestamp
 Target Machine (rope)

 Image Characteristics List (string list)
 From the alternative heading obtained:

 Subsystem target
 Characteristics of a DLL
 Illusion Number
 Main Image Vers.
 Thumbnail Vers.
 Linker vers.
 System Vers.

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

92 JTIE - VOLUME 1, NO. 1, APRIL 2022

 Subsystem Vers.

Features containing strings are first converted to a byte representation and then parsed
through a feature hash to produce 10 fields of summary data. This will vectorize your data to an
established size. Location table imported from alternative heading along with imported functions
sorted by library cut from “PE file”. This data is summarized using “FeatureHasher”. Total
of 256 bins used to summarize all unique libraries and 1024 bins are used to represent pairs of
libraries: “FunctionName”. All exported functions are extracted as strings and then
encapsulated by 128 boxes using FeatureHasher.

 Area Information
 The Area Table is copied following information:

o Area Name
o Virtual size
o Size
o Entropy
o Virtual size
o Area Characteristics (string list)
o Entry Point

A quarrel trick is used for the label. This combination are aggregated applying a
“FeatureHasher”, with 50 bins assigned to each set of values. The part attribute is collected
personally using the same quarrel trick.

Basic Byte Information

Consists of basic byte information for analysis of platform-independent PE files. This can
also be used to classify malware that is not intended for Windows environments. This study did
not aanalyses the efficiency of this model with non-Windows malicious software, so it does not
address the persuasiveness of this approach in similar cases. The byte information extracted from
the file is independent of the file type. This is a simple representation of all the bytes that make up
the file. Because these bytes vary in size, this study summarizes this data using the approach
perspective by Saxe and Berlin (2015). This method is also implemented in the Extract Features
from the Dataset module. A byte histogram is the number of times each unit value occurs in the
file. Bytes can have values from 0 to 255. That is, the histogram for that byte consists of 256
possible occurrences of the integer value. Forward a capacity of windows in 2048 bytes and a step
of 1024 bytes, we can slide this window over the file to compute the entropy histogram, compute
the “Shannon H entropy” of the 2048-byte window, and plot the joint distribution of this window
and each byte To do. it contains.

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

93 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 3 “Byte Histogram”

Figure 4 “Byte-Entropy Histogram”

Polite String

All of PE files consist of ability that are beneficial data sources. All abilities consisting of
more than five polite elements are excerpted from the file. The excerpted ability are checked the

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

94 JTIE - VOLUME 1, NO. 1, APRIL 2022

content to build the rooted of functions that bring summary statistics about the string content of the
file. Only several components composed in the class used as classical appearance. The categories
are as follows:

 C:\ (case sensitive) represents the Windows path
 HTTP:// or HTTPS:// denotes a URL
 HKEY_ denotes the Windows registry key

This serves two purposes: it can reveal certain characteristics of the file that are not revealed
from the header information, and it protects the privacy of benign files because the study only
summarizes string data.

After deriving the appearance from the PE file, 2351 features are obtained per sample.
However, this feature value is widespread along a total whose price is close to zero, over (109),
and down (-104). These aspects are illustrated as a line graph in Fig. 5. A scatterplot of these aspects
is difficult to see the extreme values, so a line graph should be drawn.

Figure 5 A raw sample line graph

When trying to practice an example with this data type, here the model does not assemble
and returns an A-UC of zero: five. This is obvious because the scale of the features being extracted
varies so much that it requires any model of regularization back used in exemplary. This study uses
analytical normalization by Jayalakshmi and Santhakumaran, (2011).

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

95 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 6 Scatter plot of the normalized sample

𝜎(𝑋) =
1

2351
(𝑋 − 𝒳)

Here, Pedregosa et al, (2011) “using the ‘StandardScalar function’ provided
‘scikit-learn library’ to normalize the sample is used”. This operation achieves the
same computations as the supposed raised.

NNC

In this study, DNN was used to analyze the data. Two NNs are assembled, one with a
dropout layer and one without a dropout layer. Logistic and rectified linear unit (ReLU) activation
functions were tested for these two networks. The optimizer supplied in the Keras library by Adam
and Kingma (2014) was “used for gradient-based optimization of classifiers”. A schematic of the
two NN is shown in Figures 7 and 8. A network without dropout layers consists of one input layer
accepting capacity, DNL, and a BOL. The alternative network with two dropout layers and two
high-density layers is the improvement of introducing dropouts with fewer layers. increase.

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

96 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 7 Summary NN

Figure 8: Summary of a NN with dropout layers.

Models Summary

The model summary diagram is shown in Figure 9. The entire model subsists:

 Extract headers and platform-independent functions from PE files.
 Use quarrel tricks to encapsulate header features Weinberger et al, (2009).
 Reduce the appearance to a 1-spatial aim input.
 Feature normalization uses statistical normalization or Z-score.
 Pass an aim input over a densely connected DNN.

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

97 JTIE - VOLUME 1, NO. 1, APRIL 2022

Final outcome is zero/one.

Figure 9 Model flowchart

RESULTS AND TESTING

Experiment settings

The model used in this study continues to qualify “Dell Precision Tower” and “Intel Xeon
E3” CPU, “Nvidia GeForce GTX 1080 Ti”, and “64 GB of RAM”. This is then implied in “Python
with the libraries installed: TensorFlow” by Abadi et al, (2016), "Loud” by Chollet et al, (2015),
“NumPy” by Walt, (2011), “scikit-learn” by Pedregosa et al, (2011), “LIFE” by Thomas, (2017),
“Pandas” by McKinney, (2010) and “MatPlotLib” by Hunter, (2007). Some packages and libraries
bet on the raised, but usually, all of that is automatically installed as an element of the instalment

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

98 JTIE - VOLUME 1, NO. 1, APRIL 2022

action using Anaconda Python with Python vers- 3.6.7 for all experiments (Anaconda Software
2016).

Metrics - Testing Model

Before testing the model, it is important to identify the metrics to be used for this purpose.
In this case, this study tested the accuracy and diagnostic capability of the model present in the
study, “receiver output characteristic” was obtained and the “area under the curve”/”AUC” was
found. This method generally provides a better measure of classier diagnostic ability than
commonly stating the overall accuracy of the model contrary to a given test set by Fawcett,
(2006:861) and Metz, (1978:283). The distraction matrices of the NN-based model and the decision
tree-based model were also found first to generate clear to find cases of misclassification that are
not obvious from the R-OC curve. The R-OC curve was derived by plotting the “true positive rate”
(TPR) of the classifier contrary to the “false positive rate” (FPR). TPR and FPR are calculated
using the following equation:

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝑃
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

Where TP is a true positive, P is the total positive samples present in the test set, and FN is
a false negative. FP is a false positive, N is the total negative samples present in the test set, and
TN is a true negative. roc_curve, A-UC is used and the module by “sci-kit -
learn.metrics” to get the R-OC curve, and the fusion_matrix module from the
same library to get the distraction matrix. All data is plotted using MatPlotLib. The 200K test
sample provided in the dataset is used to test the model used and the results are compared with a
decision tree-based model using LightGBM (Guolin et al, 2017).

Test results

Table 6 short of outcomes for an NN-based classifier, and a decision tree-based classifier

To test this research model using four diverse NN-based classifiers testing it using a
decision tree-based classifier. A summary of the results can be seen in table 6, as can be seen from
the R-OC curves in Figures 10, 12, 13, and 15, the A-UC of the NN using the ReLU activation
function is slightly lower than that using the sigmoid activation function. In addition, although the
A-UC of the decision tree classifier is the highest, the true positive rate of this model is the same
or lower when limited to a 1% false positive rate compared to a ReLU-based NN. The distraction

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

99 JTIE - VOLUME 1, NO. 1, APRIL 2022

matrices for the models in Figures 11, 13, 15, 17, and 19 serve to improve the decision of the
analysis work for different models. As ReLU appeared to collect the best results, the R-OC curves
of the ReLU-based NNs were compared, and the decision tree classifiers were in Fig. 19 and 20.

Figure 10 R-OC Curve model using a NN (Sigmoid)

Figure 11 Aberration matrix model using NN (sigmoid)

Real World Testing

Next, this study tests the first-operating model of the recommended model (RelU)) contrary
to a resolution tree model to check how well it performs in detecting real malicious PE files and

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

100 JTIE - VOLUME 1, NO. 1, APRIL 2022

the results are summarized in Table 7. For testing, this research uses a sampling bath of nine
hundred and ninety-seven samples from VirusShare.com Robert, (2011).

Figure 12 R-OC model curve (sigmoid) using NN with dropout

Figure 13 Sigmoid - Aberration matrix model using NN with Drop-out

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

101 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 14 ReLu - R-OC Curve Model using NN

Figure 15 ReLU - Aberration matrix model using NN

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

102 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 16 ReLU – model R-OC curve using NN with Dropout

Figure 17 ReLU - Aberration matrix model using dropout NN

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

103 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 18 ReLU - R-OC curve model using NNs and decision trees.

Figure 19 ReLU - The R-OC curve model uses dropout NN and uses decision trees.

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

104 JTIE - VOLUME 1, NO. 1, APRIL 2022

Figure 20 Aberration matrix models Using Decision Trees

Table 7. Actual test result

CONCLUSIONS

In this research, it is shown that the use of DNNs for advanced malicious software
disclosure is feasible and has the possibility for more enhancements. Experiments in ionic research
spectacle that same in position compelling measured data, NNs can still be used more efficiently
than decision trees. 5 atomization method that can completely recap wide files for distribution is
defined in this study. The interest in having large datasets available in the domain cant be forgotten.
This study present that advanced malicious software investigation can be an active tool for
classifying malicious software regardless of the presence and level of detection of effective
malicious software study. increase.

For future suggestions, further research is needed in this area to determine how efficiently
a NN can be a classifier for measured data related to a resolution tree model. Testing under here-
and-now conditions has presented that there are closed unexplored gaps in this area that require
further testing for practical implementations.

REFERENCE

Ammar AE Elhadi, Mohd A Maarof, and Ahmed H Osman. Malicious software detection based
on hybrid signature behavior application programming interface call graph. American Journal of
Applied Sciences, 9(3):283, 2012.

Anaconda. Anaconda software distribution version 2-2.4.0, November 2016.

Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malicious
software detection. In Twenty-Third Annual Computer Security Applications Conference (ACSAC
2007), pages 421-430. IEEE, 2007.

Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep learning for
classification of malicious software system call sequences. In Australasian Joint Conference on
Artificial Intelligence, pages 137-149. Springers, 2016.

Byron P Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted
decision trees as an alternative to artificial NNs for particle identification. Nuclear Instruments and
Methods in Physics Research Area A: Accelerators, Spectrometers, Detectors, and Associated
Equipment, 543(2-3):577-584, 2005.

Charles E Metz. Basic principles of R-OC analysis. In Seminars in nuclear medicine, volume 8,
pages 283-298. Elsevier, 1978.

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

105 JTIE - VOLUME 1, NO. 1, APRIL 2022

Christopher Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to information
retrieval. Natural Language Engineering, 16(1):100-103, 2010.

Daniel Billar. Opcodes as predictors for malicious software. International Journal of Electronic
Security and Digital Forensics, 1(2):156-168, 2007.

David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and Heng Yin.
Automatically identifying trigger-based behavior in malicious software. In Botnet Detection, pages
65-88. Springer, 2008.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dilshan Keragala. Detecting malicious software and sandbox evasion techniques. SANS Institute
InfoSec Reading Room, 16, 2016.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825-2830, 2011.

Francois Chollet et al. Hard. https://keras.io , 2015.

Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Control flow graphs as
malicious software signatures. In International workshop on the Theory of Computer Viruses,
2007.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pages 3146-3154, 2017.

Hamid Divandari, Bassir Pechaz, and Majid Vafaie Jahan. Malicious software detection using
Markov blanket based on opcode sequences. In the 2015 International Congress on

Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo Garcia Bringas. Open A static-
dynamic approach for machine-learning-based malicious software detection. In International Joint
Conference CISIS'12-ICEUTE 12-SOCO 12 Special Sessions, pages 271-280. Springers, 2013.

JD Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90
-95, 2007.

Jeremy Z Kolter and Marcus A Maloof. Learning to detect malicious executables in the wild. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 470-478. ACM, 2004.

J-Michael Roberts. Virus share.(2011). URL https://virusshare.com , 2011.

John Nickolls, Ian Buck, and Michael Garland. Scalable parallel programming. In 2008 IEEE Hot
Chips 20 Symposium (HCS), pages 40-53. IEEE, 2008.

Jon Oberheide, Michael Bailey, and Farnam Jahanian. Polypack: an automated online packing
service for optimal antivirus evasion. In Proceedings of the 3rd USENIX conference on Offensive
technologies, pages 9. USENIX Association, 2009.

Joshua Saxe and Konstantin Berlin. DNN-based malicious software detection using two-
dimensional binary program features. In 2015 10th International Conference on Malicious and
Unwanted Software (MALICIOUS SOFTWARE), pages 11-20. IEEE, 2015.

Karthik Raman et al. Selecting features to classify malicious software. InfoSec Southwest, 2012.

Journal of Technology Informatics and Engineering
Vol.1, No.1 April 2022
e-ISSN: 2961-8215; p-ISSN: 2961-9068, Hal 80-107

106 JTIE - VOLUME 1, NO. 1, APRIL 2022

Katherine Heller, Krysta Svore, Angelos D Keromytis, and Salvatore Stolfo. One class support
vector machines for detecting anomalous windows registry accesses. In ICDM Workshop on Data
Mining for Computer Security, 2003.

Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola. Quarrel
feature for large-scale multitask learning. arXiv preprint arXiv:0902.2206, 2009.

M. Sikorski and A. Honig. Practical Malicious software Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, 2012.

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on automated
dynamic malicious software-analysis techniques and tools. ACM computing surveys (CSUR),
44(2):6, 2012.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensor flow: A system for large-
scale machine learning. In 12th fUSENIXg Symposium on Operating Systems Design and
Implementation (fOSDIg 16), pages 265-283, 2016.

Michele Banko and Eric Brill. Scaling to very very large corpora for natural language
disambiguation. In Proceedings of the 39th annual meeting on association for computational
linguistics, pages 26-33. Association for Computational Linguistics 2001.

Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect malicious patterns.
Technical report, WISCONSIN UNIV-MADISON DEPT OF COMPUTER SCIENCES, 2006.

Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray. A semantics-based
approach to malicious software detection. ACM SIGPLAN Notices, 42(1):377- 388, 2007.

Bagga's name. Measuring the effectiveness of generic malicious software models. Master's thesis,
San Jose State University, 2017.

Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The hidden malicious software.
IEEE Security & Privacy, 9(5):41-47, 2011.

Randy Kat. The portable executable file format from top to bottom. MSDN Library, Microsoft
Corporation, 1993.

Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas.
Malicious software classification with recurrent networks. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1916 -1920. IEEE, 2015.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd international conference on Machine learning, pages 161-
168. ACM, 2006.

Robert E Schapire. The boosting approach to machine learning: An overview. In Nonlinear
estimation and classification, pages 149-171. Springer, 2003.

Romain Thomas. Lief - library to instrument executable formats. https://lief.quarkslab.com/, April
2017.

ADVANCED MALICIOUS SOFTWARE DETECTION USING DNN

107 JTIE - VOLUME 1, NO. 1, APRIL 2022

Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi.

Srilatha Attaluri, Scott McGhee, and Mark Stamp. Profile hidden Markov models and metamorphic
virus detection. Journal in computer virology, 5(2):151-169, 2009.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

T Jayalakshmi and A Santhakumaran. Statistical normalization and backpropagation for
classification. International Journal of Computer Theory and Engineering, 3(1):1793-8201, 2011.

Technology, Communication, and Knowledge (ICTCK) page 564-569. IEEE, 2015.

Tom Fawcett. An introduction to R-OC analysis. Pattern recognition letters, 27(8):861-874, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10-
20, 2007.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Adaboost multi-class. Statistics and its
Interface, 2(3):349-360, 2009.

Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: A dynamic android malicious software
detection framework using big data and machine learning. In Proceedings of the 2014 Conference
on Research in Adaptive and Convergent Systems, RACS '14, pages 247-252, New York, NY,
USA, 2014. ACM.

Wenyi Huang and Jack W Stokes. Mtnet: a multi-task NN for dynamic malicious software
classification. In International Conference on Detection of Intrusions and Malicious software, and
Vulnerability Assessment pages 399-418. Springers, 2016.

Wes McKinney et al. Data structures for statistical computing in python. In Proceedings of the 9th
Python in Science Conference, volume 445, pages 51-56. Austin, TX, 2010.

