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Abstract. Android is an operating system with open source and consists of several layers,
with the different layers its duties and responsibilities. Various parties in the
customization chain such as device vendors such as Samsung, Xiaomi, Oppo, Huawei,
and others, operators such as Telkomsel, Smartfren, XL, etc., and hardware
manufacturers can customize one or more layers to adapt devices for different purposes,
such as supporting specific hardware and providing different interfaces and services.
The purpose of this study was to investigate systematically for any inconsistencies that
arose as a result of the processes involved in this study and to assess their various security
implications. This research runs DroidDiff to perform a substantial-balance diverse
investigation on images collected by the analytical methodology. DroidDiff found a lot
of differences when it comes to the selected features. The method used in this study is the
method of five differential analysis algorithms. As a result, by comparing the security
configurations of similar figures, important security changes that could be accidentally
introduced during customization can be found.
The results show that DroidDiff can be used by vendors to check the configuration of
various security features in a given image. DroidDiff will extract those features from the
image, and compare them to other image configuration sets, then DroidDiff will flag the
inconsistent ones for further investigation by vendors who have the source code and tools
to check their effect. For future work, improvements to DroidDiff to more accurately
detect risky inconsistencies are highly recommended. Improving DroidDiff will help
reduce the number of false positives and determine risky configurations more accurately.

Keywords: Credential Analysis, Android,  Security Configuration, Android
Customization.

PRELIMINARY
Like the leaves that bloom in the rainy season, the smartphone market is growing

rapidly for various reasons. Smartphone with Android OS has such popularity in various
circles without age limits. Android drives innovation and brings more and more features
to its users, this makes it a feature-rich device and an attractive mobile application. The
open nature of the Android ecosystem adopted by Google naturally provides the basis for
a highly fragmented operating system. The official version of Android is enterprisingly
custom-made into a multitude of organization images by people in the customization
string with hardware builders, material vendors, and carriers free to create the basis for
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customizing it with various features and models to differentiate their products from
competitors. As device vendors become more adept at tweaking the Android framework
and default system apps, making features like higher resolution and more innovative
cameras eventually make Android customization more prevalent over time. However,
these customizations lead to problems, present serious security vulnerabilities, and
ultimately cause severe damage. Given that, and the security of the vast consumer
Android customizations at stake, it's important to study and investigate the security
ramifications of Android.
Android Customization Process

The utilization zone, placed at the dominant place of the Android architectural
model and providing core applications such as Home, Contacts, Phone, and Browser, is
often customized by device vendors and carriers. Research by Jiang et al., (2013) has
shown that this layer has always been the focus of vendor customization. Vendors and
operators modify  AO-SP  applications that are reloaded by default to provide more
advanced functionality and UI. The Framework and Libraries layer sits immediately
below the Application layer and provides support for developers to access a variety of
privileged resources, services, and functionality. At the base of the layer is the “Linux
kernel”, providing a level of separation among the instrument hardware and containing
all the important hardware drivers.
Android Customization Dangers

Android device customization provides opportunities for enhanced functionality
and excellent personalization for its customers, however, it also provides opportunities
for increased security risks, given that Android's fragmentation process is highly
unregulated. To keep this nether supervision, Google has launched an “Android
Compatibility Program” to guide the personalization process. At the Linux kernel layer,
a study by Wang, (2014) investigated “the security configuration of Android Linux device
drivers and found that many of these devices have not been properly protected, causing
their exposure to parties who should not access them can directly command the open
camera driver to take a picture”. Research by Jiang et al., (2013) revealed that the
Application layer is also full of flaws introduced during the customization process.
Similarly, the work of Jiang et al., (2012) anecdotally shows that Android vendor-
preloaded apps have security flaws delivered on some special devices.

LITERATURE REVIEW
Android Customization - Vendors customize the Android framework to support

more advanced features and offer a unique user experience. Complicating the process
further, the baseline of  AO-SP  has been heavily modified for different versions of
Android. Of the 682,000 devices surveyed, more than 24,000 different devices and 1294
different brands have been identified, of which the largest portion (37.8%) is
manufactured by Samsung. Specific Hardware Components - Over time, Android
devices may run different hardware components. Hardware and chipset manufacturers
customize Android devices to provide better levels of performance and more advanced
hardware. Vendors adopt the primary Android software bundle to new hawker-limited
hardware platforms by integrating some of the add-ons to the Android OS. Interface
Device Vendor Specific Users - Some vendors design their UI, and each custom UI uses
its color palette and UI elements, e.g. different UI on Samsung and Xiaomi Redmi, each
presenting a different setup aesthetically. Device vendors integrate this custom UI into
their own devices by adding and modifying existing Stock Android UI elements. Carrier-
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Specific Features - Based on carrier network requirements (Tsel, XL, 3, and so on),
device vendors modify telephony services to allow integration of multiple LTE and GSM
bands, even 5G networks that are currently released. Device vendors must also make a
series of Android layer changes, to support carrier-specific restrictions. Android Update
- Android customization process at a fast pace  AO-SP  updates its OS versions, most of
which are already highly customized, and gives rise to the multitude of personalized
Android section synchronic on lots of cell phones worldwide at various version levels and
coexisting today's market.
Customization Effects
Compatibility and Portability Issues

Each new Android API level introduces features and removes bugs. Even if each
release aims to integrate new changes without breaking existing pre-installed applications
in older versions, often perfect compatibility cannot be achieved. Due to insufficient
product lines and cross-platform testing for new features and changes, Android apps may
not behave consistently across versions. To ensure consistent and correct Android
application behavior across various API levels and hardware configurations, Google
presents the “Firebase Test Lab” (FTL) for Android, a cloud-based infrastructure for
comprehensive testing of Android applications before they are released, through FTL
Android developers can access various devices. Android devices installed in Google's
data centers and testing their apps across different makes and models, across different
Android APIs, device configurations, and screen orientations, and to locate dissolution
and establish unity over the Android devices, Google launched the Compatibility Program
earlier.
Android Layered Architecture

To enable the application builder to access different assets and functionality, the
Android scheme layer brings many high-level of initiation equally  PackageManager,
ActivityManager, NotificationManager, and many others. This service mediates access
to system resources and enforces appropriate access oversight based on several criteria
such as application user id, Android permissions obtained, Signature, etc. Just down the
structure layer is the “Libraries layer” which is a collection of “Android-specific libraries”
and other core libraries like “libc, SQLite database, media libraries”, etc. Just like the
structure initiation, convinced Android custom libraries to perform multiple access
control analyses based on similar criteria (e.g. caller user id, permissions, etc). At the
bottom of the Android layer is the Linux kernel which provides a level of abstraction
between the device hardware and the layers over it. It consists of all the small-level of
foundation system functionality like recollection management, action, and energy
supervision and brings essential hardware drivers like a camera, a display device, and
Wifi. The “Linux kernel layer” intercedes access to hardware drivers and rough assets
based on the basic “Discretionary Access Control (DAC)”.
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Figure 1.: Android Architecture and Layered Components
Customization Aspect: Application Layer

 Added new default application. Wu et al (2013) conducted a source analysis that
aimed to characterize different pre-prosperous applications into 3 clusters:
applications that came from AO-SP, applications personalized by vendors, and
other applications that were merged into ordinary images with at most 18 results,
22% of apps are from  AO-SP, implying that 81.78% of preloaded apps are added
by vendors and others.

 Modifies existing  AO-SP  and older vendor-specific app editions. During the
customization process, vendors may add new components to existing preloaded
applications to provide new functionality and services. To adapt applications to
different needs, vendors may also change the implementation of one or more
components.

 Removing existing preloaded applications. Vendors may customize Android
devices by removing certain applications that are not required for the functionality
of the device or that may have been replaced with vendor-specific applications.

Customization Aspect: Framework Layers
 Added new system services
 Modify existing system services
 Modify other framework binaries
 Changing configuration files

Customizable Security Risk Categorization
1. Security Risk due to the Addition

Figure 2 summarizes the possible security effects of introducing new applications,
components, or services to kernel frameworks, libraries, and drivers.

Figure 2.: Customization Security hazard from adding a new entity
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 Buggy and Accessible Network Application. With no attentively calculated and
supplied, newly introduced applications or built-in entrails might consist of harmful
practices, research by Jiang et al., (2013) shows that most of the vendor-preloaded
apps studied exhibit permissions that exceed privileges. “This study detects that
most of the vendor applications contain static willing effluence and content
pollution” (Zhou&Jiang, (2013)). Content leaks occur when the content provider is
world-readable, or if it is accessible from other exposed components.

 Vulnerable framework services and libraries. Omitting access control checks in
vendor-added system service APIs could expose related functionality to
unauthorized applications, similarly, weaker access control checks could also
compromise associated operations, as they can be easily circumvented.

 Weak new device driver configuration. If not properly protected, devices could
grant illegitimate apps to access hypersensitive user data or system capabilities
which usually require malicious/Android system permissions Therefore, vendors
can harm devices if they do not enforce proper access control permissions in device
drivers recently added.

2. Security Risk due to Modification

Figure 3.: Customization Security hazard from modifying existing entities
 Vulnerable System Apps. If the elemental components provide powerful

prospects, humiliating their conservation will consistently advantage to accepted
Android susceptibility equally permissions representation offensive, gratified
exposures, and infection invasion.

 Powerless system-expanded structure. If not done carefully, the new security
configuration could be weak and break some of the assumptions made by other
components. If you enter the wrong G-ID into the permissions mapping then the
permissions level will be lowered, so it is very dangerous to continue.

 Weaker configuration of existing device drivers. Despite analyzing the device
driver configurations of 2423 images and comparing them to their counterparts in
AO-SP, the study by Wang et al., (2014) identified 1290 possibly vulnerable
images, including at least one device driver whose write/read access is weaker than
the same file in  AO-SP  reference.

 Disconnects in  Android parts. Various Android parts are linked simultaneously
by “Inter-Component Communication (ICC)”. By modifying component identifiers
and intent filter attributes during customization, vendors risk solving intrinsically
existing ICC between various preloaded applications, installed third-party
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applications, and even framework services that refer to other components in the
device.

3. Security Risk due to Deletion
Removing certain applications or components from existing applications can

cause a break in the real connection that stands between them. If used on a device but its
specifier has been detached, a malware application could be enough in those gaps to gain
important systems potentially, simply by impersonating the owner of the attribute.

RELATED WORK
Security Dangers of Android Customization - Research by Jiang et al., (2012)

who systematically studied 8 popular Android smartphones from various manufacturers
revealed that these phone images did not accurately accomplish an admission-based
safety model. Some special or critical acceptance that covers perceptive user data in
preloaded apps will be exposed to non-privileged apps. Research by Wang et al., (2014)
analyzes the security configuration of Linux Android device drivers to find the dangers
of fragmentation at the Kernel layer, Wang et al., (2014) conducts efficient research on
the safety risk of customizing Android devices through automatic identification of
associated Linux files by operating on a specific device driver then comparing the level
of protection (Linux file permission bits for each file) on the vendor version with the
appropriate  AO-SP  version. Any weak protection detected in vendor device drivers
implies a potential security hazard. The existence of a Linux file permissions mismatch
across two similar OSes, together with its dangerous relationship with Android
permissions is quite worrying. Tian et al., (2014) audited third-party Android phones
oblique with the authoritative Android operating system to find potential security
vulnerabilities and design flaws that glide over the hawker personalized. Tian et al.,
(2014) extracted preinstalled apps and libraries from a custom Android image, built a
suitable system from  AO-SP, then compared preinstalled apps and libraries to find
modifications and assess their safety. Research by Gallo et al (2015), highlights security
issues in the Android permission model concerning Android customization.

Improved Android Security. Wallach et al., (2011) proposed a security
mechanism to overcome the problem of deputy confusion by tracing the IPC call chain
and allowing selected applications to operate with reduced caller privileges or exercise
their full privileges. Similarly, research by Wetherall et al., (2011) introduces new privacy
controls to protect sensitive user data by providing shadow data instead of personal data,
and through exfiltration blocking. Other frameworks such as XManDroid (Sadeghi,
(2011)) and “TrustDroid” (Shastry et. al., (2011)) “focus on mediating communication
between components in different applications”. “FlaskDroid” (Sadeghi et al., (2013)) and
the SEAndroid project (Craig et al., (2013) also mediate component interactions as part
of their deployment. SEAndroid solves the professionally complicated challenge of
“porting SELinux-based essential access control” from the desktop territory to Android.

Android update. Some researchers are trying to identify vulnerabilities caused
by the very fast Android application life cycle and frequent updates released by Google.
Thomas et al., (2015) compiled a corpus of 20400 dedicated Android devices and
demonstrated that is important changeability in the delivery of safety updates to Android
devices manufactured by different vendors and carriers; which leads to a known
unpatched security vulnerability. The research revealed that 87.7% of Android devices
pooled had major safety susceptibility and were resolved to 1 big hazard. Research work
by Yuan et al., (2014)) reveals another class of attacks caused during an Android OS
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update where an attacker can strategically invoke other permissions and attributes, which
are available in future versions of the OS, to elevate his privileges after the update is done.

Component Hijacking Attack on Android.
The security effects of exporting content providers have been studied by Zhou et

al., (2013) including content leakage and content pollution. Permission re-delegation
attacks (Chin et al., (2011)) illustrate another consequence of unintentional export of
public interfaces, in which an application with permissions performs privileged tasks on
behalf of the application without that permission; thus, attackers can use privileged
capabilities without obtaining the appropriate Android permissions.
Android malware

Potharaju et al., (2012) proposed various hazard indicators based on the
permissions needed, for the division, such as the acceptance requested from applications
belonging to the same division. Molloy et al.'s research, (2012) used a probabilistic
generative model to calculate the real hazard mark of Android applications based on the
acceptance they demand. Other work to detect malware via bytecode level information
includes which relied on an exploratory and failure way to analyze skeptical arrangement
in expert code, and “DroidRanger” (Jiang et al., (2012)) which detects Android malicious
software based on the similarity of needed acceptance and behavior traces to known
malicious software families, formulated through heuristic based filtering. DroidAPIMiner
performs thorough API call frequency analysis in both gentle and malware applications
to extract malware appearance and adopt machine learning to get the largest compatible
appearance.

AsDroid Liang et al., (2014) “detect hidden application behavior by identifying
discrepancies between API calls and text displayed in the GUI”. Rieck et al., (2014)
“extracted several features from Android applications and applied machine-learning
techniques to perform the classification”. Zhao et al., (2014) “extract more sophisticated
classification features to counter malware variants and zero-day malware”. More
specifically, they extract contextually weighted API addiction graphs as programmatic
definitions to build up appearance sets and introduce chart affinity metrics to discover
comparable utilization action suiting indulgent secondary application characteristics.
Methodology
Feature Extraction

Figure 4: Investigation Flow
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Figure 5: Android Security Model
1st dominant layer is preloaded applications given by instrument hawkers and

another 3 parts (mobile carriers). To enable the utilization builder to access a variety of
assets and functionality, the “Android Framework” layer brings many high-level services.
This service mediates access to system assets and enforces appropriate access control
based on the application's user id and the Android acceptance it has obtained. Assertive
services may accomplish access control based on the package name or caller credential.
Just down the structure layer is the “Libraries layer” a set of “Android-specific libraries”
and other crucial libraries. Just the scheme services, convinced Android custom libraries
to perform various access control analyses based on the caller's user id and acceptance as
well. The bottom of the layer is the “Linux kernel” that brings a level of absorption among
the instrument hardware and consists of all the important hardware drivers. The “Linux
kernel layer” negotiated access to hardware drivers and raw assets based on the standard
“Discretionary Access Control (DAC)”. To boost association, Android applications are
linked gather by “Inter-Component Communication (ICC)”. Apps can invoke
components of other utilization (such as activities and services) through intent
mechanisms. It could configure some safety parameters to cover the asset's band
functionality.
Permission

Default and custom Android permissions are used to protect inner components,
data, and functionality. The level of permission protection must be chosen carefully
depending on the resources to be protected. Signature and SystemOrSignature level
permissions are used to protect the most privileged resource and will only be granted to
applications signed with the same certificate as the specified application. Dangerous
permissions protect personal data and resources or operations that affect data stored by
the user or other applications such as reading contacts or sending SMS messages.
Requesting Danger level permissions requires explicit user confirmation before granting
them. The normal level, on the other hand, is granted permissions that protect the least
privileged resource and do not require user approval.
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Table 1: Security Check

Regularly, for different describe acceptance e ∈ ep defines the safety appearance
fine as follows:

fine = ProtectionLevel(e)
The possible value of one is in the set “{Normal, Dangerous, Signature,

Unspecified, 0}”. The SignatureOrSystem level is mapped to Signature because neither
of them can be obtained by third-party applications without a Signature check. Undefined
values refer to predefined permissions without protection level, whereas 0 refers to
undefined permissions in the image.
GID

Certain low-level Linux ID groups (GIDs) map to Android permissions. Once an
application process has obtained permissions then the G-ID is mapped and used for access
control in the kernel. Android maintains that any inadvertent changes to platform.xml will
expose a serious vulnerability. To allow the discovery of GIDs that are vulnerable to
permission mapping, the minimum permission requirements required to obtain a
particular G-ID are mapped to the given image. If the same G-ID has each minimum
requirement on 2 images, this is probably accessible.
Protected Broadcast

Safety broadcasts are broadcasts that can only be sent by system-level processes.
Applications use protected broadcasts to ensure that no system-level process can trigger
a particular broadcast receiver. System applications can define broadcasts that are
protected as follows:
<protected-broadcast android:name=" broadcast.name"/>

Other applications can use the protected broadcasts described above via the
following:
<receiver android:name="ReceiverA">
<intent-filter>
<action = "broadcast.name"/> <intent-filter/>
<receivers/>

The above receivers can only be generated by the system process that broadcasts
a broadcast. name-protected broadcast. The application can also use protected broadcasts
via dynamically registered broadcast receivers. While the personalization process, certain
bundles are updated and changed. Certain protected broadcast definitions will be removed
as well. The goal is to uncover whether these conflicting unprotected broadcasts are still
being used, as the process of filters inside the receiver. This may open up a deliberate
vulnerability, as receivers that developers thought could only be called by system
processes would now be callable by any third-party application and consequently expose
their functionality. Properly, for different “Protected Broadcast e ∈ EPB” is defined as:

fne = ( ),
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Part of Clarity
Android grants the builder the to determine if only declared parts could be termed

apparently by another application. Clarity could be rooted via flags exported in part
declarations inside the app's manifest file. If this flag is unspecified, clarity will be
essentially rooted based on whether the part describes a filter when present then the part
will be exported otherwise it will appear as:

Data Creation
To reveal whether the customization party changed the configuration of the

quoted safety appearance, a bigger-scale divergent investigation was performed. a total
of 591 Android ROMs were collected from Samsung Update and physical devices. These
images were personalized by 11 hawkers (vendors), for approximately hundred and
thirty-five models, and eight carriers. They operate Android versions from 4.1.1 to 5.1.1.
Details about the collected images are in Table 2. In total, this image includes an average
of 157 apps per image and 93169 of all apps simultaneously. To extract the selected
security feature values in each image, a tool named DroidDiff was developed in this study.
For different images, “DroidDiff” first takes its scheme resource “Apks” and preloaded
Apks, then runs “Apktool” to extract the analogous manifest files. Second, it collects
configuration files under “/etc/permission/”. Then, “DroidDiff” searches the extracted
manifest and configuration files for the definitions of the targeted entities (EP, EPB,
EGID, and EC). Lastly, “DroidDiff” runs the values developed over the various
investigation methodology.

Table 2: Android Image Set

RESULTS AND FINDINGS
This research runs DroidDiff to perform large-scale differential analysis on

images collected by adopting the preceding method. DroidDiff found a lot of differences
when it comes to the selected features. Figure 6 shows the global development identified
by the investigation of this study. The moderate proportion of identified inconsistencies
is plotted for various appearance parts (Permissions, GID, Broadcast Protected,
Component Visibility, and Component Protection) using five differential investigation
algorithms. To bring an opinion of the amount of inconsistency, different grid trick
represents the average amount of total global existence in the studied image set. Using
the first grid of tiles as a specimen to draw what the data means: under the “Cross-Version
(A1)” investigation, “DroidDiff” developed an average of 673 global acceptance per
different studied applicant set. Fifty percent of the applicant image pool contains a partial
four points eight percent of the amount of acceptance that has conflicting levels of
protection. Figure 6 characterizes the root of images that are deviation, they have a bigger
amount of differences correlated to another root of images in the same array.
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Figure 6: Overall Inconsistency Detected. Al: Cross Version, A2: Cross Vendor,
A3: Cross Model, A4: Cross Carrier, US: Cross Region

As described in Figure 6, the “Cross-Version (A1)” investigation catch the
maximum proportion of disagreement across all five division, that’s means, improvement
of the identic device model to various Operation System version propose the best safety
configuration improvement. The perceptive explanation trailing this over the new
Operation System clemency, Android may apply greater conservation to the identical
individual to mass several bugs that found (example: expanding permission requirements
to privileged services). However, through more recent OS releases, it was discovered
certain security features were downgraded, leading to potential risks if done accidentally.

Through the “Cross-Vendor (A2)” investigation, “DroidDiff” detected that some
safety appearances were incompatible between hawkers, like if had an identic Operation
System version. Further analysis was performed on the vendor causing the top number of
deviations. A compelling observation is that lower Hawker, as well as Xiaomi, introduce
some hazardous incompatible. All those incompatible;e (potentially egregious) G-IDs are
actually due to these 3 companies. Perhaps, small vendors may not have sufficient
expertise to fully evaluate the security implications of their actions. Cross-Model
Analysis (A3) also detected several inconsistencies, meaning that different device roles
by the same hawker and Operation System version may have various safety
configurations. Even though the “Cross-Carrier (A4)” and “Cross-Region (A5)”
investigations catch a low proportion of inconsistencies, it is closely important to notice
the identical device model running the same Operation System version may have several
various configurations if adjusted for various devices operator.
Permission Change Arrangement
Safety level Imbalance

“DroidDiff's” differential analysis outcome clarifies that Android acceptance
might have various levels of protection on identical images. As illustrated by Figure 6,
more than 50% of candidate image pools contain at least 32 (of 673), and 9 (of 817)
permissions that have inconsistent levels of protection across Cross-Version (A1) and
Cross-Model (A3) analyzes, each. To reveal more insights, the most common protection
level change combinations are also examined, which of the following three desirable
combinations is highly frequent “(Normal, Dangerous), (Normal, Signature), or
(Dangerous, Signature)” The occurrence of each pattern is also calculated, and the
outcomes are shown in Figure 7. The combination “(Normal, Signature)” is a highly
frequent arrangement. This is over genuine because some acceptance has a “Signature
protection level” on several images are appointed by a “Normal protection level” on other
images. Presented here are 2 acceptance that has incompatible levels of protection:
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 com.orange.permission.SIMCARD_AUTHENTICATION holds Signature and
Normal protection on Samsung S4(4.2.2) and Sony Experia C2105 (5.0.1),
respectively.

 com.sec.android.app. syncope.permission.RUN_ SYSSCOPE holds Dangerous
and Signature protection on Samsung Note4 and S4(5.0.1), respectively.

Attack
Several actual attacks have been confirmed on several devices, among others.

1. Steal e-mails. SecEmailSync.apk is the default application on Samsung devices. This
consist of a satisfied operator "com.Samsung.android.email. other providers". Over-
role analysis reveals inconsistent permission protection at this operator around
multiple Samsung images. “Read and Write” access to this operator is guaranteed
with the Signature acceptance “com. Samsung.android.email.permission.”

2. Fake a Prime SMS message. The “TeleService Package (com.android.phone)”
comes pre-loaded on many Samsung devices and brings a lot of outset for phone
and call authority. An essential service is “the.TphoneService”, which shows
several key telephony functions such as receiving voice and video calls, dialing a
new phone number, mailing letters, and recording voice and video calls. “Cross-
Model” and “Cross-Version” analysis reveals permissions mismatches in this
demanding authority

3. Invalid “factory reset”. Announcement receiving
ServiceModeAppBroadcastReceiver that listens for multiple intent filters including
the action filter com. Samsung.intent.action.SEC_FACTORY_RESET_
WITHOUT_FACTORY_UI which allows resetting the phone and deleting all data
without user confirmation. Cross-Version analysis reveals a mismatch of protection
for this important broadcast receiver. On most devices running Kitkat and below,
this receiver is protected with the Signature permission
com.sec.android.app.servicemodeapp.permission.KEYSTRING. However, on
some Lollipop images, it is not properly protected.

4. Access essential drivers with normal permissions. Over-Hawker investigation
declares demanding protection downgrades of system GIDs. On some images, such
as the Samsung S5 (4.4.2), this G-ID maps to the Signature permission
com.qualcomm.permission.IZAT. However, in other images, this G-ID maps to the
normal level of the android.permission permissions. ACCESS_MTK_MMHW
indicates that any third-party application can easily get the system GID. Table 4
lists the device drivers that can be accessed via the system G-ID on the Digiland
DL700D Tablet. This is a privileged driver but is now accessible to normal
applications.

Table 3: Drivers accessible by the System GID
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5. Triggering an emergency broadcast without permission. CellBroadcastReceiver
is a built-in Google app that performs important functions based on the cellular
announcement it receives. These annals a PrivilegedCellBroadcastReceiver
broadcast receiver that allows it to receive emergency broadcasts from the cell
provider (eg evacuation warning, presidential alert, yellow alert, etc.) and displays
the appropriate alert. This important function could bring about the
“android.provider.Telephony.SMS_EMERGENCY_CB_RECEIVED” action
being received. “Cross-Vendor” and “Cross-Version” analysis found preservation
incompatibility in this acceptor with different devices but protected with
android.permission Dangerous “permission.READ_PHONE_STATE”. analysis
revealed that this was also caused by a risky pattern of duplicate recipients. On the
victim's device, “PrivilegedCellBroadcastReceiver” has been announced 2x, 1st

announcement needs the “Signature permission” and stem the
android.provider.Telephony.SMS_EMERGENCY_CB _RECEIVED action, while
the second takes care of a less privileged action and requires Dangerous permission.
Any third-party application can bypass permission requirements on the first
recipient via explicit invocation.

6. Corrupts “system-wide settings”. “SystemUI” is a built-in application that
commands system windows. It handles and draws much of the system UI such as
the top status bar, system notifications, and dialogs. To manage the top status bar,
Samsung SystemUI specifically includes the com.android.
system.PhoneSettingService service, which handles incoming requests to turn
on/off various system-wide settings that appear on the top status bar. These settings
include turning on/off wifi, Bluetooth, location, mobile data, tathering, driving
mode, etc; which is usually done with the consent of the user. The analysis
performed shows the incompatibility of protections for these services. On S5(4.4.2)
and Note8(4.4.2), this service is guaranteed by the Signature permission
“com.sec.phonesettingservice.permission.PHONE_ SETTING”.

7. Another “Randomly Selected Cases”. The effect of inconsistent safety
configurations is important. In addition to the end-to-end attack, a total of 40
inconsistencies were randomly selected and manually analyzed for what could have
happened after being exploited.

Table 4: Impact of Inconsistent Security Configurations

Limitations
 Component implementation changes. Static changes to a component's security

configuration (visibility or protection permissions) may not necessarily represent
a security risk over time.

 Component renaming. The approach used will miss detecting inconsistent
component configurations that have been renamed during customization.
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CONCLUSIONS AND RECOMMENDATIONS
This research conducts a study of Android customization related to security

aspects. This study aimed to systematically investigate any inconsistencies created as a
result of this process and to assess their security implications. The first investigation led
to the discovery of a genuine Android safety defect that had never been considered
previously. This research highlights the importance of security risks and reveals crashes
in various Android devices, and shows that Android devices are full of such flaws.
Second, this research is making the early experiment to consistently find safety
configuration adjustments imported by Android personalization. This research lists the
safety appearance implemented across different layers of Android and utilizes differential
analysis in a substantial number of personalized ROMs to catch out if persistent across
those layers. By measuring the safety configurations of identical drawings, important
security changes that could be accidentally introduced during customization can be found.
The results show that DroidDiff can be used by vendors to check the configuration of
various security features in a given image. DroidDiff will extract those features from the
image, and compare them to other image configuration sets, then DroidDiff will flag the
inconsistent ones for further investigation by vendors who have the source code and tools
to check their effect.

For future work, this research suggests improving DroidDiff to more accurately
detect risky inconsistencies. In addition, similarities between components must also be
calculated and their security configurations must be examined more thoroughly to detect
cases that might have been missed. Improving DroidDiff will help reduce the number of
false positives and determine risky configurations more accurately. So that
DroidDifferential analysis results can be used to predict the correct security configuration
of misconfigured features. If most of the security features have the same configuration,
then the inconsistent components will likely be configured the same way in the victim
image.
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