

International Journal of Teknology Informatics and Engineering

e-ISSN :2961-8215;.p-ISSN :2961-9068

Volume 1 No. 3 , Desember - 2022

67

THREAT ATTRIBUTES HANGING IN THE WILD

ANDROID

Irdha Yunianto
Universitas Sains dan Teknologi Komputer

Mars Caroline Wibowo
Universitas Sains dan Teknologi Komputer

Budi Raharjo
Universitas Sains dan Teknologi Komputer

Abstract. Android is a complicated system that applications and component are usable

and support for multiple work together, giving rise to highly complex interdependence

relationships. Meanwhile, the Android environment is notable for being greatlty disparate

and decentralized: different Operation System version is personalized and re-personalized

by different parties about fast and used by whoever that can develop an application for

that version. Android secure its explanation sources over an app sandbox and permissions

model, where each application execution in this part can entrance only suspectible overall

assets and another application component (value providers, services, activities,

publication receivers) by the appropriate liscense.

This study uses Harehunter measurement to automatically detect Hare vulnerabilities in

Android system applications. Harehunter and HareGuard performance evaluations were

carried out in this study, both of which proved to be highly effective. The approach used

here is divergent investigation, by searching all quoted, decompiled script, and obvious

data for targeted attribute determination as an initial step, and running an XML parser.

The outcome of this research show that the impact of Hares is very significant. The

application of HareGuard in this study proved to be effective in detecting all attack

applications that were made. Further evaluation of the performance impact on the

minimum system host. For future research, to make Harehunter more effective, it is

suggested to use a more qualified analyzer. So that this direction can be explored in more

depth.

Keywords: Harehunter, HareGuard, Android, Android Malware Detection.

PRELIMINARY

What's causing the issue here is the intrinsic interdependence relationship in

different Android part like as framework application and services, linking one function to

the other over matrix to the final’s attributes like package, activity, service name, provider

authority content, and permissions. Adjustments made to these components, if not carefull

on this then it can easy breach some of these relationships, outcoming in matrix to

charaacteristic that don't exist (for example, SMS/MMS provider authority is not present

on the tablet), in this study referred to as attribute references, hanging, or hares.

As other impact of Android's dissolution, Hares can also be involved by 3

component developers that design their applications to install on different versions of

Android in the particular service part they use. As example, references to ordering value

68

providers that don't exist can also be stuck in 3-part apps that undertake on smartphones

and tablets. “Compared to the personalization flaws found in previous research, namely

about Linux layer device driver misconfigurations, hanging references are a scheme sheet

problem and prospectly highly effluence, bring the case that the networks and applications

system at that sheet are always the straight on personalization” (Nappa et al., (2012)).

However, as the issue that never be fixed, its waeanty implications, field, and dimensions

are, consequently unclear at all.

RELATED WORK AND LITERATURE REVIEW

Android Security Demystification

Android Security Survey
A high-level of Android waranty serve in the study of Chaudhuri et al., (2011)

aims to better understand Android application attack vectors through a systematic

characterization of popular Android application security. The authors consider various

issues including malicious functionality and vulnerabilities and propose the Dalvik parser

for analysis. Both works highlight concerns in excellence application and proportition

Android's liscense-based safety design. A similar study Christin et al., (2011) provides

another survey on Android security in general. The first job provides a mobile platform

taxonomy of attack classes with specific examples (such as Android repackaging attacks,

remote payload execution, etc.) as each class applies to the Android environment, then

proposes mitigations where possible. Recently, SoK by Smith et al., (2016) systematized

“study about Android waranty and privacy on the app platform”. To equitably estimate

and match the existing various method, first is general understanding of the various

challenges and attack models that threaten the Android ecosystem, and then produce a

cohesive concept of the striker abilities.

Android permissions

Android permissions are aimed to safe important Android assets at the scheme

layer. Optionally, apps can use built-in or custom permissions to protect their resources

(value operators, services, activities, or broadcast receivers). Research by Wagner et al.,

(2011) utilizes dynamic analysis to demystify android permission usage, by mapping the

API to its permission requirements. To overcome some of the limitations of Stowaway

(Wagner et al., (2011)), PScout (Lie et. al., (2012)) proposed a fixed investigation

instrument whose aim is to generate a complete specification for Android's permissions

system that lists the permission requirements for each API call. This tool performs

affordability analysis between API calls and permission checks across Android source

code. A study conducted by Cowan et al., (2012) proposes a real realization of trusted UI

in the form of access control gadgets that enable user-based representation of liscense to

applications when the gizmo can be successfully segmental into application systems.

Research conducted by Beznosov et al., (2015) aims to increase the effectiveness of

Android permissions by using the idea of separation as dependent fairness. More

specifically, the authors propose a new permission request model, which would only

prompt the user when an app accesses sensitive data in a way that goes against the user's

expectations. Sadeh et al., (2014) propose to reduce the list of permissions faced by users

at the time of application installation and replace it with a concise list that reflects the

privacy profile. Another study conducted by Xie et al., (2013) and Chen et al., (2014) on

Android permissions uses NLP techniques to analyze Android application descriptions,

obtain the required permissions, and check whether the permissions match the effective

permissions requested. in the android manifest file. Yin et al., (2015) took a different

69

approach and produced a security-centric application description from an analysis of the

application code to educate Android users about understanding the functionality of a

particular application at installation time.

Android and Web

Other researchers are focused on uncovering vulnerabilities in specific Android

applications across the web landscape. Yinet al., (2011) presented the first systematic

study of WebView security issues and found several attacks that revealed underlying

problems in TCB and the weakened sandbox of WebView Android infrastructure. Chen

et al., (2013) conducted another systematic study to understand unauthorized origin

crossing of mobile OS and highlight the existence of such vulnerabilities in high-profile

applications. Research conducted by Peri et al., (2014) has broadened the field to wrap

the code shot strike on all HTML5-based cellular applications. The strike especially goal

effective applications that take advantage of the “WebView” appearance that available in

Android.

Previous research by Wagner et al., (2011) has studied the receipt of illegitimate

intent where attackers can hijack activities and services if there is an implicit intent. The

research not immediately address Hare's weaknesses as it unwanted any legitimate

activities/services to be referenced. Instead, it addresses facts that various receivers are

current on n instrument. Other study includes evaluating security risks resulting from

design flaws in push-cloud messaging (Han et al., (2014)), identifying risks of Android

app uninstall processes (Qiu et al., (2016)) and risks of Android Clipboard components

and mechanisms sharing (Smith et al., (2013)). “2 new studies have more investigated

code abuse in Android applications” (Fratantonio et al., (2013); Lee et al., (2013)). Other

work includes finding vulnerabilities in flawed Android designs, such as research

conducted by Huang et al., (2015) exploiting weaknesses in Android system servers to

mount multiple DoS attacks and Qian et al., (2015) research uncovering Android root

providers and shows that this well-engineered exploit is no good protected, and can be

extremely dangerous if exploited.

GUI security

GUI guarantee has been studied widely in the context of the Android OS with its

unique design and GUI subsystem. It has been proven that the confidentiality of the

Android GUI can be breached by embedding UI components from malicious sources

(Yinet al., (2011); Roesner&Kohno et al., (2013)), via the ADB command to take

screenshots without the user's knowledge (Wang et al., (2014)), via other side channels

such as shared memory (Mao et al., (2014)), or reading device sensors (Balakrishnan et

al., (2012)). Recently, research conducted by Liu et al., (2015) conducted an in-depth

evaluation of the system security of Android multitasking and ActivityManagerService

design and found a wide-open attack surface that allows confusing the user about the

displayed UI and threatens its confidentiality.

Android security model and attribute reference

Various Android components (application or its internal activities, services, value

operators, acceptancor) are connected to each other the references become dangling, that

can have serious security implications. Other categorically, an application can define

permissions for different part and only can run messages requests from those who have

acceptance. Apps that want to get these permissions must seek user approval. However,

when the party that specified the permissions doesn't stay on a particular history, liscense

preservation hangs: whoever assigned the permissions could be quitely boost privileges

to entry guarded application part.

70

Opposing models

Scenarios, that a malware application has been installed on the object instrument

in this research, are considered. Nevertheless, the application doesn't use to have any

careful acceptance. Literally, in fact suspended liscense safeguard, it can decribe itself

the lost acceptance to releas all type of invasion. To transmit the stolen information by

the device, the application requires conversation capabilities. This could be done

absolutely by inquisitive for system liscense, that almost all apps already ask for.

“Alternatively, malicious applications can harness different lines, such as browsers, to

transmit data” (Brodley et al., (2013)).

Exploit Hares

As noted previous, a hanging aspect mention can be an “ICC-call” to a missing

bundling, action, assistance (that can be determined essentially by an activity filter) or

content operator authority. In the existence of anologous references, a malware

application claiming its objected attributes can developed entry to information sources

discovered or protected by permissions. Another categorically, if the mention is

unmaintained forward the execution line demanding Hare, malicious software that bring

in the characterize automatically gains the privileges idnetial bythe aspect and is titled to

receive perceptive letter by the operator.

It's important to note that not all hanging references are exploitable. It can be

guaranteed by authenticating the presence of the package that is supposed to describe it

and authecticating this contribution “FLAG_SYSTEM”, or by countering the current

instrument method, or other setting (e.g. getProperty). The existence of that safeguards

was consistent in this research over automated code investigation. On the other hand, if

guarantee checks are not performed, Hare becomes vulnerable to exploitation, although

it is still difficult to find conditions to trigger the code. In this study, several ninety-seven

Android insudtry images by extensive instrument manufacturers as “Google”,

“Samsung”, “LG”, “HTC”, and “Motorola” were analyzed systematically and get 21.557

hanging aspects mention that are expected to be accessible. To recognize the safety hazard

they may posture, an end-to-end attack was created on multiple Hare instances. For a

minor percentage which found phisically, that boosted the perfect study, mostly Hares,

especially those in pre-installed applications, were identified naturally adopting Hare

hunter.

Ghost in Samsung Galaxy

Samsung Task Manager is a system application that offers convenient memory

management to users. Through this service, one can monitor which applications are

currently running on the device. In this study, the Task Manager was analyzed and it was

found that it does not display the applications on the white list. Interestingly, the particular

application is orderly this bundle name and there is no signature verification to check its

authenticity. Also, many of them are missing on various devices. The consequence here

is that an adversary can build malware that exploits those hanging references, using the

official app name to ensure that the app won't attract attention while operating, for

example, recording phone conversations in the background. Some ghost apps are

implemented in Samsung Note 8.0 and removed from Task manager. Once again this

deliberately installed attack app masquerades as a logger, bypassing Appstore security

checks.

71

Fake “Drop-box” smartphone LG
“LG FileManager” is a system application on LG smartphone devices that support

users to supervise their file that help to use “Dropbox”, that can be opened by clicking on

the button with the “Dropbox” icon. Attractively, in android “LG G3” factory images, the

analyzers in this study get that the button in 1st test to release a process inside

“com.vcast.manager”, and only goes to the Dropbox web login page after an unsuccessful

attempt. The program logic can be tailored to devices distributed by Verizon but leave

references to device-dependent service with other carriers and development phones. In

this study, the attack application was created to simulated “com.vcast.manager” and

hijack the activity indicated by hanging references. Because “LG FileManager” does not

review the target application's signature before starting its activity, “LG FileManager”

blindly runs this application every. This allows the app to display fake Dropbox login

activity to steal user confidental.

Changing the Proper Registrar
“S-Voice” appliance voice recording using the default recorder. There are 2

recorders, “com.sec.android.app.voicerecorder” and “com.sec.android.app.voicenote”.

What happens is “S-Voice” 1st tries to use the voice recorder activity and only if this fails

(the application doesn't exist) it switches to voice note. Again, like a 2-choose-1 process

does not implicate proper target verification. This allows building an attacker application

that mimics a voice recorder application with the “VoiceRecorderMain” Action to handle

the goal references. Experiments on Samsung Note 8.0, show that the rusher activity is

always requested, even in the appearance of a voice note, that allows to record considerate

user conversations or carry out phishing attacks.

Calling Intent Piracy
The amazing finding of this study is that the Hare fine value operator inside

“Google Email” authorize a malware application to fully rechange this internal account

appearance by malware action. In particular, Google Email, the standard email

application on every Google phone, allows users to configure various email accounts

(Gmail, exchange, etc.) through the Settings interface. To call this activity, the app sends

an implicit Intent with the action android.intent.action.EDIT and the content

“data://ui.email android.com/settings?account=x”, x is the ID of the email account used

to inform the setup activity account which email settings to edit. Both of these parameters

are defined in the account settings activity “Intent” sift, ensuing code:

<!-- Account Settings Intent Filters-->

<activity

android:name=".activity.setup.AccountSettings" android:exported="true">

<intent-filter>

<action android:name="android. intent. action. EDIT"/>

<category android:name= "android. intent. category. DEFAULT"/>

<data android:scheme="content"

android:host="ui.email.android.com"

android:pathPrefix="/settings"/>

</intent-filter>

This implicit intent can be accepted by any application that defines the above

Intent filter this hustle. Nevertheless, during this come, Android pops up screen listing all

electable recipients to allow the user to vote. So protection can be circumvented, making

malicious apps the sole eligible addressee. The data in end section of the “Intent filter” in

the script is analyzed and examined how the “ActivityManagerSer” (“AMS” for short)

72

complete the “Intent” sent to this “Intent filter”. Figure 1 illustrates the Intent resolution

steps in this scenario. If the data schema is content, AMS will try to infer the “MIME”

(“Multi-Purpose Internet Mail Extension”) from the attached data to identify recipients

that can handle this type: the data type here should be provided by the

“ui.email.android.com” value operator. Moreover, this operator doesn't subsist and as n

outcome, the type is usually ignored and the Intent is sent to whoever specified the action.

EDIT and filter data (schema="content") with no MIME type specified.

Figure 1. Leveraging “Hare Authority” to Hijack Email Account (Setup Activity)

The safety hazard here is a hint to a crashed value operator and can be utilized by

a malware application that defines that provider. What the malicious software can do is

name the provider authority “ui.email.android.com” to accept queries from AMS, give

back a “MIME” type of its own choice to provide false information, and meanwhile

specify this type in its activity's Intent filter itself, making it the only app eligible for

Intents (to perform account setup activities). In this study, the built attack application

73

takes through the value operator and responds to queries from AMS with the MIME type

“vnd.android.cursor.dir/vnd.example.ABC”. Additionally, the attacker defines an Intent

filter as serve in the next code snippet, by claiming a mineType with the type that AMS

tells it.

“<!--Malicious Setting Activity Intent Filters-->”

“<activity android:name=”. MaliciousSetting">

<intent-filter>

<action android:name="android. intent. action. EDIT"/>

<category android:name= "android. intent. category. DEFAULT"/>

<data android:scheme="content"

android:host="ui.email.android.com"

android:pathPrefix="/settings"

android:mimeType= "vnd.android.cursor.dir/vnd.example.ABC"/>

</intent-filter>

In this way, the Intent of the app only points to the malware, directing the user to

a malicious process that would allow to enter his password.

“Tango in the dark”
“Tango” is a popular through-platform messaging app, that offers audio, and

Vcalls in any signal include LTE, and Wi-Fi networks. This application has been installed

more than 100 million times from Google Play. To display received “SMS” messages, set

up an Intent filter with the “android.provider.Telephony.SMS_RECEIVED” action to get

the Intent that carries the message from the “TelephonyManager”. When a user sends a

message via Tango, the app saves it to sms, the phone's value operator. On devices

without a Phone, Tango's reference to its value operator hangs. Therefore, a malware

application can determine the value operator is using the authority sms to obtain user-sent

“SMS messages”. This can happen the first time the malicious software sends the “SMS”,

causing the unintentional user to reply. What can be exploited here is another

vulnerability in Tango: the app doesn't secured SMS recipients with

“android.permission.broadcast_sms” system permission, as it should. This allows. It’s

enable any party broadcasting the “SMS_RECEIVED” action to inject fake short

messages into the application. In this study, the attack was implemented on Samsung Tab

8.4, sending fake messages to “Tango” and receiving user responses using a malware

value operator.

Scam on Smartphone LG “CloudHub”

“LG CloudHub” is a system application that enable to handle the cloud accounts,

uploading data to the cloud, and accessing it by various instrument. The app supports

“Dropbox” and “Box”, and on various devices, it can also connect users to other services,

including LG's cloud provider. Information about these additional services is stored in the

value operator “com.lge.lgaccount.provider”, which “LG CloudHub” looks up every time

it's called. Interestingly, on some phones, this provider is missing. A prominent example

is smartphone “LG G3”. When this happens, LG CloudHub only shows the default

services, Dropbox and Box. However, this refers to the value operator as a case of Hare

and exposes it to malware app manipulation. Specifically, an attack application that

defines the “com.lge.lgaccount.provider” is implemented and placed in the entry for the

LG Cloud account in the value operator. This account is then shown in the list of available

LG CloudHub accounts. Once clicked by the user, the app sends an implicit Intent with

the action “com.lge.lgaccount.action.ADD_ACCOUNT”. On the device (G3), there is no

pre-installed app that defines the action, which allows the malicious software to define

74

the action, claiming it can handle Intents. The effect is that user's click on a system app

triggers malware activity disguised as a login page for an LG Cloud account, which is

used to trick users into revealing passwords and other credentials.

Confiscation of Permits

Hare defects can be caused by acceptance, that describe by network applications

and used to oversight the access to different system or application-establish assets (e.g.,

value operator s, broadcast receivers, etc.). While the operation system personalization

activities, applications that determine liscense (their "original" owners) may be removed.

Meanwhile, if the resource protected by this permission still exists, the use of the

permission (for protection) becomes a dangling reference. To exploit such a weakness,

adversaries can easily pinpoint missing permissions but still use them to developed the

access to the assets that was protecting. This problem was also found to be widespread in

this study and appeared in all ninety-seven scanned factory images. Making this threat

especially insidious is the fact that Google Play doesn't review double permissions: all

the rush apps made here were successfully uploaded there.

Get contacts from S-Voice

The S-Voice system application cinsist of a value operator

(“com.vlingo.midas.contacts.value operator”) that stores information about your

contacts, such as name, email address, phone number and home address. Access to the

operator is preserved. By the pair “com.vlingo.midas.contacts.permission.READ”

(“READ”) and “com.vlingo.midas.contacts.permission.WRITE” (“WRITE”).

Nevertheless, it turned out that the Samsung Galaxy Note three and Samsung Tab Galaxy

Note eight were not specified, opening the door for exploitation. In particular, the attack

application, in this study he was created for two devices and determines “READ and

“WRITE” permissions. Applications are known to successfully read all contact details

from “S-Voice” and freely improve data maintained by value operators. Modifying

contact email addresses, URLs, and phone numbers can lead to information disclosure

and other consequences (for example, if a user enters a hostile URL placed in a friend's

access, etc.).

Designing
The idea behind this method is very gentle. Different research is first performed

for different industry images. Explicitly extract all attributes defined by preinstalled

applications and all hints to aspects in their scripts, Compare the citation with the

definition. The difference in 2 endings represent the potential appearance of rabbits. For

example, if a package name is used to start an activity (“startActivity”) or bind a service

(“bindService”), but is not owned by any app pre-installed on the device, references to

that Hares name will be there is likely to be. On the other hand, such clues are surprisingly

well hidden. For example, before referencing a package, a system application first checks

for this, collects its signature information (such as “getPackageInfo” with the

"GET_SIGNATUREflag"), and compares it with the original application's signature.

Identifying truly accessible rabbits requires analyzing code between potential guards (e.g.

signature verification functions) and examining possible dangling references (e.g.

"startActivity") for relevance. To implement this idea, the system is designed with three

main components: Pre-Processor, “Differ”, and “GuardCatcher”, as shown in Figure 2. A

preprocessor extracts an application package from an operating system image and

transforms it into a format can be investigated in subsequent steps. “Differ” conducts

branch surveys and reports possible dangling estimates. Catcher looks at her APK that

contains references to determine if the references are protected.

75

Figure 2.: Harehunter Design.

Pre-processing
By different manufactory image, firstly “Harehunter” raise all of the to pre-

installed application, form “APK” & “ODEX” files, and process to “Apktool” to

concentrate different applications obvious file to gather the apps into “Smali” code.

Several instrument especially Samsung, the application’s system “ODEX” files are

frequently separated by their “APK” files, to increase their loading times, during the

“Flowdroid”, the passive authority where this build network exists in this study only run

on “APK”. To solve this problem, before processor is armed to extract the “ODEX” files

automatically, decompile them, then recompile and compress them, along with their asset

to current “APK file”. More complexing this process is that for Android with five point

zero Lollipop type, the “ODEX” files are changed by the O-AT files, that consist of

origina code. This apps as forms, firstly, “Harehunter” unzips this O-AT file and then

runs “oat2dex” to convert it to the “ODEX” format, allowing the above process to move

forward.

Divergent investigation

To execute various investigation, firstly revamp exploration all cited and

unabigous files for the definition of the focus attribute. Processing an “XML” resolver,

this method can be easyly gather detailed packages, behavior, and gratified provider

advisors and liscense by single app unabiguous files. Note that all of these aspects can

only be specified uniquely, except for actions that receive broadcast messages. The

performs usage definition analysis of each calling page to find the Control Progress

generated by Flowdroid. Restore the attribute names of interest using Graph (CFG). The

problem here is that some program entry points like onHandleIntent are missing, so

Flowdroid can't render a complete CFG. In this implementation, as many discoverable

entries as possible are added back, but there is still some target function calls that

Flowdroid cannot make associated CFGs with. For this call, the current prototype can

only handle situations where the attribute name is hardcoded in the associated function.

76

Shield Identification
Quotation to loose attributes are regularly secured. There are two basic ways of

protection, signature shield and feature shield. The appearance of authentic packages can

also confirm the correctness of action and activity names. Another way to secure this

attribute is to review the new develop method of the device, as only several that have

specific appearances (in terms of bundle, content operator, and so on): for example, input

mechanism, and email of application, they can all differ from build to building; The

SMS/MMS provider might not even be on the tablet.

To identify like protections, “Guard-Catcher” performs stigma analysis over

application data progress and control progress, adopting the functionality served by

“Flowdroid”. In particular, this method 1st recognize series of shield appointment as well

as “hasSystemFeature” and “getPackageInfo” by the “GET_SIGNATURES” parameters

and then tries to build up the relationship of them and the hanging hints found by

divergent investigation, the importance conditions for that hint to be safe. For this aim,

the output of this guard is specified as the taint source, and references are marked as

stigma decline. “Flowdroid” is processing to resolve if a stain could be raised by the first

to the last. For a sink that can't be soiled, it's most likely reported as Hares.

Figure 3.: Example of a Signature Based Guard

Figure 4.: Example of a Feature-Based Guard

77

Processing full stigma investigation for each shield and hint set will be rally low.

To create a shield identification more extensible, “Catcher” employs a multi-step

combined approach, combining rapid property inspections by stain investigation. In

particular, it first checks whether the corresponding source and sink are in the same

mechanism. In the vast majority of facts, they are linked and therefore the hint is treated

secured. If not, the next approach analyzing the bundle names convoluted in the signature

review by those used for hint. Compatibility found between partners almost always

express a protective relationship. For example: “com.facebook.katana” (fig. 3) that

appears inside getPackageInfo and setClassName. Only when both tests fail, heavyweight

stain investigation will be adopted. In this study's wide-field investigation of

manufarturies drawings, it was get the most of the time, the shielding for hint can be found

in 2 steps.

EVALUATION
The evaluation of implementation effectiveness in this dimension study was

conducted, involving Operation System images for niety-seven popular devices, all

together in more than 24,000 system applications. “Harehunter” informed 21557 possible

Hares. From all these Hares, a random sample of 250 was taken and the code was analyzed

manually. Only thirty-seven, that is fourteen percent, that can catch to be wrong

detections: incorrectly warning the guarded hint as Hare. The Guard Catcher's false

negative rate was then measured by randomly examining possible hanging quotation

informed by the Differ and measuring the outcome by those detected by the “Catcher”.

In all two hundred and fifty samples, fourty six or nineteen percent were lost by this

application. “Flowdroid is known to be problematic in handling ICC” (Octeau et al.,

(2014)) and other problems such as lost entry points and call chart is not completed. While

this occurs, stain investigation can’tbe performed.

RESULTS

Great Balance Mastering

To figure out the field and significance of the safety hazard caused by Hares, a

big-proportion analysis research on ninety-seven industry images was carried out in this

study. The research prove that “Hares” actually widespread, by an important effect on the

Android enviironment.

OS Image Collection

In this study, a total of 97 factory images were found in “Samsung Update”,

“Android Revolution”, and “physical devices”, that includes approximately one hundred

and eighty-three applications per image and 24,185 applications in total. All of that

images are personalized for fourty nine various samartphone android or android tab

models, in thirty-six countries, and twennty-three various shipper. All of that operate

Android versions from Adnroid type 4.0.3 to Android type 5.0.2.

Table 1: Set of Android Images

78

Landscape
On investigating those manufacture of images, it was got around thirteen percent

could not be decompiled by “Apktool” or investigated by “Flowdroid”. By that

investigation, “Harehunter” found 21,557 weakness (unattended hanging hint) in 3,450

accessible applications. Several weaknesses may occur more than once inside the same

application, and some accessible applications appear on several devices. This study

revealed that each image consist-of big amount of Hare weakness, rating from eight to

five hundred and ninety eight. In regularly fourteen-point three percent of application

preinstalled in “4.X” and eleven-point seven percent in “5.X” that accessible (detailed in

table 2).

Table 2. Prevalence of Hares in System Applications per Vendor

As can be seen from the table above, the problem extends over eacg device

builder: among tge “VendorsA and C” have a important percentage of their system

applications compelling hanging hint. In correlation, Vendor D has the minimum total of

weakness is twenty-nine and the minimum ratio of broken applications (8%). The

probable reason is that the OS image the device is running on is the least personalized,

that smallest chances of introducing Hares. Figure 6 illustrates the identification of

defects in different categories of Hares. Most of the problems stem from undefined action

names. In analogy, a relatively minimum proportion of acceptance was catch to be

ramified in dangling hints.

Hares Impact
The impact of Hares is very important. In other to the end-to-end invasion made

in this research, a total of 33 samples of weaknesses were also taken randomly and

manually analyzed what could happen after being harnessed. In consequence of the

deficiency of a big amount of physical devices, all that can be done is static analysis to

deduce the possible consequences after a successful exploit. This kind of investigation

might be inaccurate, but it is still importance to understand the effect of this kind of

security weakness that has not been note previously. The outcome of this investigation is

in Table 3.

Figure 5: Distribution of Hares in Different Hare Categories

As can be seen here, Four Hares can root content leaks (browser notes and

bookmarks) after the malicious software masquerades as an unspecified value operator,

where the victim app feeds data into it. 4 examples might reveal the user's confidental

79

information wthen the hanging bundle name is hijacked. Specifically, it on Samsung Note

8.0, hanging references involve an accurate Intent being passed to a packet that doesn't

exist. The intent includes a content “URI” that points to confidental data (for example, a

photo) as well as the “FLAG_GRANT_URI_PERMIS SION” permission, which allows

the beneficiary to read the data with no asking for permission. As a outcome, illegal

applications adopting the object of bundling name can develop access (data).

Also, on the LG G3 type, hanging references to non-existent value operators

maybe open access for adversaries to pinpoint that operator to infect data synced to

another users' devices. Furthermore, this investigate announce three examples that can

start to a denial-of-service invasion when an adversary creates an undefined value

operator used by the victim application and sets the expressed emblem to fake. By the

application script, this invasion can aim a safety omission while the casually application

tries to read or write to this provider. Some other Hares can start to unforeseen situations:

an application with a certain package name won't appear in the system's Task Manager

and another application on the LG G3 type can't be enforced to quit by the LG Settings

application and catch that Hares in three applications may only show notifications. There

are six bunnies similar to the lost service with that function can't be figured out. Lastly,

the entry point for 4 Hares was not found which could be dead code.

Responsible party
For this purpose, 6 images were examined. The proportion of “Hare” defects

typically introduced by this model spacing by nine percent to twenty-nine percent. Next,

the images were grouped into subgroups and examined which showed the best proportion

of familiar Hare facts. The android tab model had the top proportition of frequent Hares

at 63%, while the mobile model had the second highest percentage of common Hares at

56%. The familiar Hare case in android tab and android smartphone models is mostly

thirty-eight percent. Adapting an operation system to a Android tab model or a android

smartphone model propose a lot of Hares. Meanwhile, the weaknesses catch on the same

model adjusted for various operators were also compared.

Table 3. Potentially Effect of thirty-three Randomly Picked Hares

80

Table 4. “Hare” Defects on Different Models of Hawker Processing on Android

4.4.2

The image of Phone 3, its adjustment on 6 carriers results in around a 3% to 20%

shortfall. Neither the manufacturer nor the carrier causes Hare's weakness. However, the

former seems to have to be more responsible than the latter. Also, most of the Hares will

most likely be popularized while operation system customization for various instrumen

models (phones or tablets).

Tendency
Figure 6 more analyze the ratio of acessible apps to various operating systems

versions over production in industry. For VendorB, the trend is close fixed: the ratio is

fourteen point three percent in 4.2.2 and fiveteen point one percent in 5.0.1. Moreover,

all of this devices, the Hare risk remains necessary indicating that manufacturers are not

yet aware of the extent of this kind of vulnerability.

CONCLUSION

“HareGuard” application has proven to be potentially in discovering all rush

applications made intentionally. Further evaluation of performance was also carried out

and minimum system host impact: the scanner was found to use only four point twenty-

nine megabyte of memory and use zero-point twenty nine percent CPU during scanning

the application obvious. Hares aren't just some random, isolated bug introduced by

implementation lapses. The appearance of these weakness defined weaknesses in the

design philosophy of Android and its ecosystem. Fundamentally, Android is a c

sysomplicated sytem, that parts and applications are signify to run together, leading to

very complex interdependence relationships between them. Meanwhile, the Android

environment is notable for being highly different and decentralized: different Operation

Systems version is personalized and re-personalized by different parties fairly fast and

used by whoever that can develop an applicaton for that version.

In the lack of more guidelines and appropriate execution method, hanging

quotation make shunless. As this study proves, Hares are widespread, present in every

device examined, and are also critical for security, compromising sensitive user data and

moreover the correct implementation of system applications. While not all of the

problems informed by “Harehunter” are usable, that depend on situation to run

suspectible code, the pervasiveness such like exposed code is worrisome: without a

thorough examination of individual cases, there's no telling if they're exploitable down

the specific terms, reputable to incidental effect.

To eliminate Hare risk, it is significance to have well-documented intersuspended

relationships and make them open to aspects relevan in operational system customization

and application expansion. In addition, there should be a policy requiring that anyone that

transform the operational system or developing applications must not create dangling

relationships as well as pointing to missing attributes, and mechanisms for policy

compliance checks. Policy enforcement here can take advantage of the available Android

81

compatibility schedule, that is presently unable to perform security checks. The suspect

section is the accumulation of interdependent relationships for all known versions of

Android. There is no such information yet. This research shows that manufacturers seem

to be oblivious to the linkages in their own devices. A systematic equipment, such as

Harehunter, is needed to recognize this information.

While efforts should be made to safe every character hint, the most important

thing here is obvious authentication rather hints. It's too regularly seen that quotation are

only implicitly secured: for example, references to system apps are secured by the app's

presence on the device, that except another apps adopting the same bundle name. Like

security is fragile, literally broken the application is changed during the operation system

is customized for a current device model. Other that, the secured checks can be more

complex than they appear. More specifically, though, package name references can be

directly safeguarded by signature checks. Another aspects like content operator and

process. usable immediately and their appearance on a particular instrument is regularly

verifable by countering the present instrument role and another appearance. Correctness

of checks, depends on recognition of component/application relationships across various

versions, models, etc., which Harehunter and other similar tools need to restore.

System protection legacy
Before even thinking about how to wipe out Hare in expanding next method and

applications, as this study shows, are full of all type of Hare weaknesses. The method

builded, “Harehunter” and “HareGuard”, made the early action towards identifying and

protecting that vulnerabilities. In particular, as previously claimed, “Harehunter” also can

manipulated an important model in meeting interdependent relationships to support safety

current system and applications. By this big potential, the current implementation is still

in its infancy: it introduces about fourteen percent error positive and misses nineteen

percent of really susceptible facts in this research. It's imaginable that “Harehunter”

would become more potential once more competent analyzers were used. In additionan

instrumen identical to Harehunter, but processing with the source code, can more

accurately detect Hare's weaknesses.

BIBLIOGRAPHY

A. Al-Haiqi, M. Ismail, and R. Nordin, "On the best sensor for keystrokes inference attack

on android," in The 4th International Conference on Electrical Engineering and

Informatics (ICEEI), Procedia Technology, 2013.

AP Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,”

in Proceedings of the 18th ACM Conference on Computer and Communications

Security, CCS '11, (New York, NY, USA), pp. 627–638, ACM, 2011.

B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and usability on

smartphones: Could user privacy profiles help?,” in Proceedings of the 23rd

International Conference on World Wide Web, WWW'14, (New York, NY, USA),

pp. 201–212, ACM, 2014.

C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to milk your android screen

for secrets,” in 21st Annual Network and Distributed System Security Symposium

(NDSS), The Internet Society, 2014.

E. Miluzzo, A. Varshavsky, S. Balakrishnan, and RR Choudhury, “Tapprints: Your finger

taps have fingerprints,” in Proceedings of the 10th International Conference on

82

Mobile Systems, Applications, and Services, MobiSys '12, (New York, NY, USA)

pp. 323–336, ACM, 2012.

F. Roesner and T. Kohno, “Securing embedded user interfaces: Android and beyond,” in

Proceedings of the 22nd USENIX Conference on Security, SEC'13, (Berkeley,

CA, USA), pp. 97–112, USENIX Association, 2013.

F. Roesner, T. Kohno, A. Moshchuk, B. Parno, HJ Wang, and C. Cowan, “User-driven

access control: Rethinking permission granting in modern operating systems,” in

Proceedings of the 2012 IEEE Symposium on Security and Privacy, 2012.

H. Huang, S. Zhu, K. Chen, and P. Liu, “From system services freezing to system server

shutdown in android: All you need is a loop in an app,” in Proceedings of the

22Nd ACM SIGSAC Conference on Computer and Communications Security,

CCS '15, (New York, NY, USA), pp. 1236–1247, ACM, 2015.

H. Zhang, D. She, and Z. Qian, “Android root and its providers: A double-edged sword,”

in Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, CCS '15, (New York, NY, USA), pp. 1093–1104,

ACM, 2015.

J. Caballero, G. Grieco, M. Marron, and A. Nappa, “ Undangle: Early detection of

dangling pointers in use-after-free and double-free vulnerabilities,” in

Proceedings of the 2012 International Symposium on Software Testing and

Analysis, ISTA 2012, ACM, 2012.

KWY Au, YF Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the android permission

specification,” in Proceedings of the 2012 ACM Conference on Computer and

Communications Security, CCS '12, (New York, NY, USA), pp. 217–228, ACM,

2012.

L. Li, A. Bartel, J. Klein, YL Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P.

McDaniel, “I know what leaked in your pocket: uncovering privacy leaks on

android apps with static taint analysis,” arXiv preprint arXiv:1404.7431, 2014.

L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor customizations

on android security,” in Proceedings of the 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS '13, (New York, NY, USA), pp.

623–634, ACM, 2013.

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of

cryptographic misuse in android applications,” in Proceedings of the 2013 ACM

SIGSAC Conference on Computer and Communications Security, CCS '13, (New

York, NY, USA), pp. 73–84, ACM, 2013.

M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic generation of security-

centric descriptions for android apps,” in Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS '15, (New York,

NY, USA), pp. 518–529, ACM, 2015.

P. Brodley and leviathan Security Group, “Zero Permission Android Applications.”

https://www.leviathansecurity.com/blog/zero-permission-android-applications/ .

Accessed: 10/02/2013.

P. Ratazzi, Y. Aafer, A. Ahlawat, H. Hao, Y. Wang, and W. Du, “A systematic security

evaluation of Android's multi-user framework,” in Mobile Security Technologies

(MoST) 2014, MoST'14, (San Jose, CA, USA), May 17, 2014.

https://www.leviathansecurity.com/blog/zero-permission-android-applications/

83

P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and K. Beznosov,

“Android permissions remystified: A field study on contextual integrity,” in

Proceedings of the 24th USENIX Conference on Security Symposium, SEC '15,

(Berkeley, CA, USA), pp. 499–514, USENIX Association, 2015.

QA Chen, Z. Qian, and ZM Mao, “Peeking into your app without actually seeing it: Ui

state inference and novel android attacks,” in Proceedings of the 23rd USENIX

Conference on Security Symposium, SEC'14, (Berkeley, CA, USA), pp. 1037–

1052, USENIX Association, 2014.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards automated risk

assessment of mobile applications,” in Proceedings of the 22nd USENIX

Conference on Security, SEC'13, (Berkeley, CA, USA), pp. 527–542, USENIX

Association, 2013.

R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized origin crossing on mobile

platforms: Threats and mitigation,” in Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security, CCS '13, (New York,

NY, USA), pp. 635–646, ACM, 2013.

S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey, you, get off of my

clipboard,” in proceeding of the 17th International Conference on Financial

Cryptography and Data Security, 2013.

SH Kim, D. Han, and DH Lee, “Predictability of android OpenSSL's pseudorandom

number generator,” in Proceedings of the 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS '13, (New York, NY, USA), pp.

659–68, ACM, 2013.

T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han, “Mayhem in the push

clouds: Understanding and mitigating security hazards in mobile push-messaging

services,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, CCS '14, (New York, NY, USA), pp. 978–989,

ACM, 2014.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android application

security,” in Proceedings of the 20th USENIX conference on Security

symposium, 2011.

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and GN Peri, “Code injection attacks on html5-

based mobile apps: Characterization, detection and mitigation,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security,

CCS '14, (New York, NY, USA), pp. 66–77, ACM, 2014.

X. Zhang, K. Ying, Y. Aafer, Z. Qiu, and W. Du, “Life after app uninstallation: Are the

data still alive? data residue attacks on android,” in NDSS, 2016.

X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, CA Gunter, and K.

Nahrstedt, “Identity, location, disease and more: Inferring your secrets from

android public resources,” in Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security, CCS '13, (New York, NY, USA),

pp. 1017–28, ACM, 2013.

Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “Sok: Lessons

learned from android security research for appified software platforms,” in 37th

IEEE Symposium on Security and Privacy (S&P '16), IEEE, 2016.

84

Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing speech from

gyroscope signals,” in Proceedings of the 23rd USENIX Conference on Security

Symposium, SEC'14, (Berkeley, CA, USA), pp. 1053–1067, USENIX

Association, 2014.

Y. Michalevsky, G. Nakibly, A. Schulman, and D. Boneh, “Powerspy: Location tracking

using mobile device power analysis,” in 24th USENIX Security Symposium,

2015.

Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog: Measuring the

description-to-permission fidelity in android applications,” in Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security,

CCS'14, (New York, NY, USA), pp. 1354–1365, ACM, 2014

