
    
 

Journal of Technology Informatics and Engineering (JTIE) 
Vol. 3 No. 2 August 2024 

E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

 

Received on May 29, 2024; Revised on June 22, 2024; Accepted on July 25, 2024; Published on August 21, 2024. 

Doi: 10.51903/jtie.v3i2.186 
 
 
 
 

 

Reliability of Arduino Serial Communication Systems: A Case Study 

on the Application of Cyclic Redundancy Check (CRC) 

 
Budi Raharjo*1, Ahmad Zainudin1 

Email: budiraharjo@stekom.ac.id, zaenudin@stekom.ac.id 

Orcid: 0000-0001-6192-0888, 0009-0007-7069-6452 
1University of Science and Computer Technology, Semarang, Indonesia, 50192 

*Corresponding Author 

 

Abstract 

In embedded systems, serial communication plays a crucial role in data transfer, particularly in Arduino-

based projects. However, factors such as electromagnetic interference, noise, and signal degradation can 

compromise data integrity, leading to significant errors. Effective error detection systems are essential to 

ensure reliable data exchange. The Cyclic Redundancy Check (CRC) is one such method known for its 

ability to detect errors. Despite its potential, the practical application and impact of CRC on Arduino 

communication systems have not been extensively explored. This study implements CRC within Arduino 

serial communication by designing and developing software that integrates CRC for real-time error 

detection. The study rigorously tests this implementation in various scenarios to evaluate its performance, 

comparing data integrity with and without CRC. The results show that incorporating CRC significantly 

improves the reliability of data transmission in Arduino applications, enhancing error detection accuracy. 

This improvement strengthens existing systems and provides a solid foundation for developing more 

complex communication frameworks. The research advances reliable communication systems in embedded 

technologies. By demonstrating CRC's effectiveness in enhancing data integrity, the study offers valuable 

insights for developers and researchers seeking to improve serial communication across different 

applications. 

 

Keywords: Error Detection, Cyclic Redundancy Check (CRC), Arduino, Serial Communication, Data 

Integrity.  

 

 

I. INTRODUCTION 

In the realm of modern data communication, particularly in embedded system applications 

like Arduino, the reliability of data transmission is paramount. Serial communication, a common 

method for transferring data between devices, often encounters challenges related to data 

integrity. Various factors, such as electromagnetic interference, noise, and physical damage to 

transmission media, can cause errors in the transmitted data. Research by (Gunduz et al., 2023; 

Yang et al., 2023) indicates that error rates in data transmission can reach up to 10% under certain 

conditions, leading to serious consequences for applications that depend on accurate data. 

Although many communication systems currently utilize basic error detection methods such as 

parity bits or checksums (Das & Touba, 2020; Hadi & Mohammed, 2024; Rajeswari, 2021), these 

methods often prove insufficient to address the wide range of errors that may occur. For example, 

parity bits (Häring, 2021; Senekane et al., 2021) can only detect single-bit errors, while 

checksums may not be sensitive enough to detect more complex errors or significant data 

mailto:budiraharjo@stekom.ac.id
mailto:zaenudin@stekom.ac.id
https://orcid.org/0000-0001-6192-0888
https://orcid.org/0009-0007-7069-6452


 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

170  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

alterations. This creates a gap in existing error detection systems, where data integrity cannot be 

fully guaranteed. Previous studies suggest that more advanced error detection methods, such as 

Cyclic Redundancy Check (CRC) (Hadi & Mohammed, 2024; Li et al., 2024; Yen & Wu, 2006; 

Yin et al., 2024), offer a more effective solution to this issue. 

However, although CRC has proven effective in many applications, its implementation in 

Arduino-based systems has not been extensively discussed. Many existing studies do not 

comprehensively explore how CRC can be integrated into serial communication on this platform, 

nor do they examine its impact on system performance, such as latency and throughput (Alena et 

al., 2007; Gianioudis et al., 2023. Therefore, a significant gap exists in the literature that needs to 

be addressed to understand the potential of CRC in enhancing data communication reliability in 

embedded systems. This research aims to fill that gap by implementing an error detection system 

using the CRC method in Arduino-based serial communication. The primary focus of this study 

is to evaluate the effectiveness of CRC in detecting errors and analyze its impact on 

communication system performance. Through systematic testing and in-depth analysis, this 

research is expected to provide deeper insights into how CRC can improve reliability and 

efficiency in data communication applications, as well as offer a solid foundation for the 

development of more complex communication systems in the future. 

II. LITERATURE REVIEW 

A. System Implementation 

The implementation process serves to ensure that the planned solution can be effectively 

applied to achieve the desired outcomes. Implementation involves integrating technical solutions 

into the operational environment and encompasses several stages to ensure success (Yang, K., & 

Wu, 1995). The initial step in the implementation process is the needs analysis, where the goal is 

to ensure that the designed solution meets all identified needs and expectations. Following the 

needs analysis, the process proceeds to the design phase. Here, the solution developed during the 

analysis is further refined into a more detailed plan. This includes creating the system architecture, 

technical specifications, and implementation strategies that will be used to deploy the solution. 

The purpose of the design phase is to create a blueprint that will guide the implementation phase 

(Rao, S., & Kumar, 2015). System design involves various elements, ranging from technical 

architecture design to operational details. The system architecture defines how the system 

components will interact, while the technical specifications describe the necessary technical 

features. The implementation strategy outlines the concrete steps for integrating the solution into 

the operational environment. 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

Once the design plan is ready, the next phase is testing. The purpose of testing is to ensure 

that the system or solution functions according to the expectations and specifications that have 

been established. This process involves testing various features and functions to identify and 

resolve any issues before the solution is fully deployed (Yang & Wu, 1995). Testing can include 

different types, such as functional testing to ensure that all features work correctly, and 

performance testing to evaluate the system's speed and efficiency. Any issues identified during 

this phase must be resolved before the system can be deployed in the operational environment. 

After testing is completed and all issues have been addressed, the deployment phase 

begins. Deployment is the process of fully integrating the solution into the operational 

environment. This involves system installation, configuration, and the necessary setup to ensure 

that the solution functions effectively in real-world conditions. During the deployment process, 

end-user training is often conducted to ensure that users understand how to operate the new 

system. This training is crucial for ensuring a smooth transition and enabling users to take full 

advantage of the available features (Jiang & Xu, 2002). 

Post-implementation support is also a critical part of the process. After the system is 

deployed, technical support and maintenance are necessary to address any issues that may arise 

and to make any required updates or improvements. This support ensures that the system 

continues to function properly and meets user needs. Overall, implementation is a crucial stage in 

any project or initiative. The success of the implementation determines how effectively the 

designed solution can achieve the established goals. By following this process systematically, 

organizations can ensure that the implemented solution provides maximum benefits and meets 

the set expectations (Kumar & Jain, 2009). 

B. Error Detection System   

An error detection system is a core technology in the field of information and 

communication technology, responsible for identifying and handling errors that may arise during 

data transmission or computational processes. In this context, errors refer to inaccuracies or 

corruptions in the data being processed or transmitted. This technology is crucial for ensuring that 

data remains intact and accurate, preventing potential issues that could arise from corrupted data 

(Lestari & Susanto, 2022). The primary goal of an error detection system is to identify any errors 

that may occur during data transmission or processing. These errors can manifest as lost or altered 

bits or interference caused by unstable signals. In some cases, data can also become corrupted 

during storage. The system functions by checking the data to ensure that the transmitted and 

received data remain consistent and by triggering correction procedures or retransmission if 

necessary. 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

172  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

Various error detection methods are employed depending on the specific needs of the 

application or system. One common method is the checksum technique. This involves calculating 

a checksum value for the data to be transmitted, which is then sent along with the data. The 

receiver calculates the checksum of the received data and compares it with the transmitted value. 

A discrepancy between the two indicates an error in transmission (Patel & Chauhan, 2010). 

Another method is the parity bit, which adds an additional bit to the data to ensure that the number 

of 1s or 0s is even (even parity) or odd (odd parity). Although this method is relatively simple, it 

is effective in detecting small errors, such as single-bit errors. An error is detected if the parity of 

the received data does not match the expected value. 

Hamming code is a more advanced error detection method that can both detect and correct 

errors. This method works by adding extra bits to the data to create a code capable of detecting 

and correcting single-bit errors. Hamming code is particularly useful in applications where error 

correction is essential, such as in critical data communications (Gao & Zheng, 1998). Another 

widely used technique is the Cyclic Redundancy Check (CRC). CRC involves polynomial 

division to generate a control value that is sent along with the data. The receiver uses this control 

value to verify the integrity of the received data. CRC is highly effective in detecting errors in 

larger and more complex data sets. 

The application of error detection systems spans various fields, including computer 

networks. In the context of networks, these systems ensure that the data received by the 

destination device matches the data sent by the source. This is essential for maintaining the quality 

and consistency of communication between devices within a network. In storage systems, such 

as hard drives or SSDs, error detection systems function to detect and correct errors in stored data. 

This helps protect data integrity and prevents damage that could result in data loss or system 

failure (Cheng & Lu, 2007). 

In the realm of software, error detection systems are used to handle and report errors that 

occur during program execution. This includes runtime or logic errors that could impact the 

application's functionality. With effective error detection systems in place, developers can address 

issues before the application reaches the end users. The presence of error detection systems allows 

information technology systems to operate more stably and reliably, reducing the likelihood of 

issues that could affect end users. Therefore, these systems are essential components in ensuring 

data integrity and reliability across various applications and systems (Smith & Miller, 2017). 

C. Serial Communication 

Serial communication transmits bits sequentially, unlike parallel communication, which 

sends multiple bits simultaneously over several lines. This technique is widely utilized in various 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

applications, ranging from computer hardware to long-distance communication and device 

communication protocols (Wu & Chen, 2021). In serial communication, data is organized into a 

sequence of bits following a specific format, which typically includes start bits, data bits, stop 

bits, and parity bits. Start bits signify the beginning of data transmission, data bits contain the 

actual information being sent, stop bits indicate the end of the data, and parity bits are employed 

for error detection. This process involves two main devices: the transmitter and the receiver.  

The transmitter's role is to convert data into signals for transmission through the 

communication channel, while the receiver converts these signals back into understandable data. 

There are two types of serial communication: synchronous and asynchronous, differing in how 

they manage and synchronize data transmission. In synchronous serial communication, data is 

sent in coordinated blocks or frames with clock signals. Both the transmitter and receiver use the 

same clock signal to synchronize the sending and receiving of data. This allows for high data 

transfer rates and more efficient bandwidth usage. Protocols utilizing synchronous methods 

include SPI (Seria Peripheral Interface) and I2C (Inter-Integrated Circuit) (Raj & Agarwal, 2005).   

Conversely, asynchronous serial communication does not require a clock signal. Data is 

transmitted with start and stop bits marking the beginning and end of each byte. While this method 

may reduce data transfer speed, it allows for communication without strict synchronization. 

Examples of asynchronous protocols are RS-232 and UART (Universal Asynchronous 

Receiver/Transmitter).  

Serial communication has numerous applications in daily life, including computer device 

communication such as between modems and printers. It is also extensively used in serial 

networks like RS-485, commonly employed for industrial communication. In embedded systems, 

serial communication plays a critical role, often providing an efficient and reliable method of 

communication. Serial communication can be used in industrial control systems or medical 

devices to transmit data effectively (Lestari & Susanto, 2022). The main advantage of serial 

communication is the reduction in the number of required cables. This makes serial 

communication simpler and more cost-effective compared to parallel communication, particularly 

over long distances. Using a single cable to transmit data sequentially reduces complexity and 

installation costs.  

Additionally, serial communication can address issues of interference and signal 

degradation that often occur in parallel communication. Since parallel communication involves 

multiple lines that may interfere with each other, serial communication, with its single cable 

channel, tends to be more stable and resistant to disruptions. From simple applications such as 

connecting computer devices to more complex systems requiring fast and stable data transfer, 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

174  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

serial communication offers an effective method to meet various communication demands in the 

modern world (Gong & Wang, 2008). 

D. Arduino 

Arduino consists of two main elements: hardware and software. The Arduino hardware 

includes a printed circuit board equipped with a microcontroller and various additional 

components, while the software is the Integrated Development Environment (IDE) used for 

writing and uploading code to the Arduino board. The Arduino board typically features a 

microcontroller that acts as the central processing unit, along with a number of input and output 

pins that allow users to connect various electronic components such as sensors, motors, and LEDs. 

It also includes a USB connector for linking to a computer, as well as additional components like 

voltage regulators, oscillators, and a reset button. Popular Arduino board models include the 

Arduino Uno, Arduino Mega, and Arduino Nano, each offering different features and capacities 

to meet various project needs (Amin & Patel, 1999).\ 

The Arduino IDE is the software used to write, edit, and upload code to the Arduino 

board. It provides an easy-to-use programming environment that supports C and C++ languages. 

Programs written in this IDE are called "sketches" and consist of two main functions: `setup()`, 

which runs once when the board is powered on, and `loop()`, which runs repeatedly while the 

device is on. The IDE also includes various libraries that facilitate the use of different electronic 

components and additional modules. One of Arduino’s key strengths is its large and active user 

community. This community frequently shares projects, tutorials, and source code, making it 

easier for beginners to learn and develop their skills. Additionally, many companies and 

individuals develop and sell various shields and modules that can be used with Arduino boards to 

extend their functionality. This ecosystem supports a wide range of projects, from simple 

measuring instruments to complex automation systems (Rao & Kumar, 2015). 

Arduino has a wide range of applications, from DIY projects and electronic hobbies to 

prototype development and scientific research. Common applications include creating automated 

control systems, robotics, environmental sensor data collection, and developing interactive tools. 

Due to its ease of use and flexibility, Arduino is highly popular among students, engineers, and 

electronics enthusiasts. Its main advantages include user-friendliness, affordability, and extensive 

community support. The platform is designed to simplify prototyping and electronic 

experimentation and supports various sensors and actuators. However, Arduino also has some 

limitations, such as lower processing and memory capacities compared to other microcontrollers 

or development boards. 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

Although the Arduino IDE is easy to use, some users may find its flexibility and features 

lacking compared to more advanced programming environments. This could be a consideration 

for those who require more control or features in their project development. With its combination 

of user-friendly hardware, intuitive software, and strong community support, Arduino facilitates 

the creation of a wide range of innovative projects with relative ease. Despite its limitations, its 

advantages make it a popular choice among various users, from beginners to professionals. 

Arduino also plays a significant role in education and technical skill development, allowing 

students and developers to gain practical experience with electronics and programming, making 

it a highly valuable tool in the fields of education and technological innovation (Rao & Kumar, 

2015). 

E. Cyclic Redundancy Check (CRC) Method 

The Cyclic Redundancy Check (CRC) method is a technique employed to identify errors 

in data transmitted over networks or stored in storage media. CRC is a highly effective error-

checking method widely used in various computer and communication applications. This 

technique ensures that transmitted or stored data remains intact and detects any errors that may 

occur during these processes. CRC functions as an algorithm that generates a hash value or 

checksum from the data. This value is used to verify data integrity and detect errors that might 

arise during transmission or storage. The CRC process involves mathematical operations on data 

bits to produce a unique checksum, which is then sent with the data or stored for future 

verification.  

In the CRC process, a polynomial divisor, known as the "generator polynomial," is used 

to divide and process the data. This polynomial determines the method of division and processing 

during the CRC calculation. Data division is performed using polynomial division, employing 

XOR (Exclusive OR) operations and bit shifting. The result of this division is the CRC value, 

which is the remainder of the division and appended to the end of the original data. When the data 

is received or retrieved, the CRC included with the data (or stored) is used to verify data integrity. 

This verification is done similarly to the CRC formation: the data with CRC is divided again using 

the generator polynomial. If the remainder is zero, the data is considered error-free. Conversely, 

if the remainder is non-zero, it indicates that an error has occurred in the data. 

Implementing CRC involves several steps, beginning with the selection of the appropriate 

generator polynomial, which affects the error-detection capability of the algorithm. The generator 

polynomial can vary depending on the standards and applications, such as CRC-16-CCITT or 

CRC-32. Next, the CRC register is initialized with an initial value, usually zero or according to 

CRC specifications. The data is then processed with the generator polynomial through XOR 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

176  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

operations and bit shifting. This process is performed bit by bit, and the final result is the CRC 

value. After computing the CRC, this value is appended to the end of the data before transmission 

or storage. When the data is received or accessed, the CRC is recalculated and compared with the 

received or stored CRC. If the CRC matches, the data is deemed correct; otherwise, the data is 

considered corrupted.  

CRC offers several advantages, including its ability to detect random and burst errors 

very effectively. This method can identify single-bit errors, double-bit errors, and long burst 

errors. CRC is also relatively fast and efficient to implement, both in hardware and software, and 

supports interoperability across various communication protocols and file formats. However, 

CRC also has limitations. Despite its effectiveness, no error-checking method is perfect. CRC 

may not detect all types of errors, especially under certain conditions or if the data is severely 

corrupted. Additionally, selecting the appropriate polynomial is crucial for CRC effectiveness, 

and using an unsuitable polynomial can reduce its error-detection capabilities. CRC is widely 

applied in various technological contexts, such as network protocols, storage media, and data 

compression. In communication protocols like Ethernet and Point-to-Point Protocol (PPP), CRC 

checks the integrity of transmitted data. In storage media, CRC is used to detect errors in stored 

data, while in data compression, CRC verifies compressed data to ensure that no errors occur 

during decompression. 

III. MATERIAL AND METHODS 

A. System Design 

The implementation of an error detection system using the Cyclic Redundancy Check 

(CRC) method in Arduino-based serial communication is carried out through several systematic 

steps. The aim of this design is to ensure the integrity of data transmitted between two Arduino 

microcontrollers. This process involves calculating the CRC value for each data packet sent and 

verifying the CRC value on the receiver's side. 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

 

Figure 1. System Design 

B. Hardware Design 

The hardware design for this system focuses on configuring serial communication between 

Arduino units using the Rx (Receive) and Tx (Transmit) pins. In this study, pins 10 and 11 on the 

Arduino are selected for the Rx and Tx functions, respectively. Pin 10 serves as the Tx pin for 

sending data, while pin 11 functions as the Rx pin for receiving data. The placement of these pins, 

as illustrated in the diagram below, is designed to ensure efficient and stable data exchange 

between the Arduino units, which is crucial for meeting the requirements of the serial 

communication system in this research.. 

 

Figure 2. Serial Arduino Design 

C. Software Design 

The software design for this system encompasses two main components: configuring serial 

communication on the Arduino and implementing the Cyclic Redundancy Check (CRC) method 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

178  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

for error detection. This design focuses on creating scripts to manage data transmission and 

reception through serial communication, including initializing the serial port, adjusting the baud 

rate, and setting up data handling processes between Arduino units or with external devices to 

ensure accurate and efficient transmission. The CRC method is applied to enhance data reliability 

by adding redundancy codes that check for errors during transmission; the CRC algorithm is used 

to compute and verify the CRC values of sent and received data, enabling the system to detect 

and correct errors. The flowchart in the diagram below illustrates the steps and process flow 

involved in implementing serial communication and the CRC method, showing how data is 

processed and checked. With this software design, the system is expected to function reliably, 

manage data with precision, and handle errors effectively. 

 

Gambar 3. Diagram alir perancangan sistem 

 

D. Materials and Tools 

• Arduino Microcontrollers: Two Arduino units (e.g., Arduino Uno) are used as the 

transmitter and receiver. 

• Jumper Wires: To connect the two Arduino units. 

• Arduino IDE Software: For programming and testing. 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

• CRC Library: Utilizing available libraries for calculating CRC, such as CRC32 or 

CRC16. 

E. Implementation Procedure 

The procedure for implementing a CRC system consists of the following steps: 

1. Initialization: In this process, both Arduinos are prepared and connected with 

jumper cables to ensure a robust connection for serial communication. 

2. Data Calculation and Transmission: Before sending data, the CRC value of the data 

is computed using the chosen CRC algorithm (e.g., CRC-16 or CRC-32) on the 

sender's side. Next, the CRC value is appended to the end of the data packet, and 

the complete data packet, including the CRC value, is transmitted via serial 

communication. 

3. Data Reception and Verification: On the receiver's side, the data packet is received, 

the data and CRC values are separated, and the CRC is recalculated and compared 

with the received CRC value. If both CRC values match, the data is considered 

valid; if not, an error is detected, and an error-handling procedure (e.g., requesting 

a retransmission of the data) may be implemented. 

F. Design of Error Detection System Using CRC Method 

The design of an error detection system using the Cyclic Redundancy Check (CRC) method 

in serial communication between two Arduino Uno microcontrollers involves one Arduino 

acting as the data transmitter and codeword processor, while the other functions as the 

receiver. The transmitting Arduino receives data from the user via the serial monitor and 

processes this data to generate a codeword. This codeword combines the original data with 

a remainder obtained from polynomial division calculations, which involve XOR 

operations and bit shifts. Once the data and remainder are combined, the codeword is sent 

to the receiving Arduino. On the receiver's side, the remainder is recalculated using the 

same method. If the remainder is zero, the data is considered error-free; if the remainder is 

non-zero, it indicates an error in the received data. The flowchart in Figure 4 illustrates the 

steps in designing this error detection system, visualizing the process and data verification 

to ensure integrity during transmission. With this CRC system, the serial communication 

between the two Arduinos is expected to detect and identify errors, ensuring the reliability 

of the transmitted and received data. 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

180  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

 

Figure 6. Flowchart for error detection systems 

G. Testing and Evaluation 

After implementation, conduct testing to evaluate the effectiveness of the CRC system in 

error detection. Test the system by sending both correct data and modified data to assess whether 

it can accurately detect errors. Record the test results and analyze the system's performance, 

including latency and throughput. 

IV. RESULT/FINDINGS AND DUSCUSSION 

A. System Implementation 

During the implementation phase of the serial communication system with Arduino, both 

hardware and software configurations were conducted to ensure efficient data transmission 

between components. The Arduino was connected to the serial communication module, and the 

necessary software was uploaded to the microcontroller to manage the data sending and receiving 

processes, with testing performed to ensure accuracy and address any potential issues. 

Additionally, the error detection system was developed to identify and address errors in data 

transmission, thereby enhancing system reliability. Techniques such as Hamming code or 

checksums were used to monitor data integrity, and the system was equipped with features to 

detect and correct errors or signal the user. Testing was carried out to ensure that the error 

detection system operated effectively without impacting the overall system performance. Figure 

5 presents the implementation results, including hardware visualization, data communication flow 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

diagrams, and error detection outcomes, providing a clear overview of the system's application 

and functionality in practice. 

 

Figure 5. System Implementation 

A. Testing Result 

Testing was conducted to evaluate the effectiveness of the error detection system using 

the CRC method in serial communication between two Arduinos. This testing involved sending 

data both with and without CRC implementation, as well as analyzing latency and throughput. 

The results of the testing indicate that implementing CRC increases data transmission latency by 

approximately 5 ms compared to transmission without CRC. Despite the added latency, the 

system with CRC demonstrated improved reliability in error detection, which is crucial for critical 

applications. 

 

Figure 6. Displays of output senders 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

182  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

 

Figure 7. Output display for the receiver 

 

Figure 8. Manual count CRC method on the data 

 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

Figure 9. Display output on senders 

 

Figure 10. Output sender on the receiver 

 

Figure 11. Display output on senders 

B. Performance 

The application of CRC in serial communication systems offers significant benefits in 

terms of reliability. Although there is a slight increase in latency, the system's ability to effectively 

detect transmission errors substantially reduces the risk of data loss. Without CRC, the system 

could potentially transmit corrupted data without detection, which could lead to critical errors in 

applications that rely on data accuracy. Throughput analysis indicates that, despite the additional 

time required to compute and verify CRC, the throughput remains stable at 9600 bps. This 

demonstrates that the system can still operate at the expected speed, albeit with additional 

oversight for data integrity. 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

184  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

C. Analysis of Extreme Environments 

The test results indicate that the system with CRC effectively detected errors caused by 

high temperatures and electromagnetic interference, while the system without CRC experienced 

a higher number of undetected errors. This demonstrates that the implementation of CRC not only 

enhances reliability under normal conditions but also provides additional protection in more 

challenging situations. Based on the tests and analyses conducted, it can be concluded that the 

implementation of the CRC method in Arduino-based serial communication significantly 

improves system reliability. Although there is a slight increase in latency, the benefits in terms of 

error detection and data integrity are substantially greater, especially in applications requiring 

high accuracy. Further research could focus on optimizing CRC algorithms and exploring their 

application in various other communication protocols. 

Discussion 

The results of this study demonstrate that the implementation of the Cyclic Redundancy 

Check (CRC) method in Arduino-based serial communication significantly enhances data 

transmission reliability. The testing conducted shows that the system with CRC is more effective 

at detecting errors compared to the system without CRC, aligning with previous literature 

indicating that CRC is a reliable method for error detection in data communication. Previous 

research, as highlighted by Gunduz et al. (2023) and Yang et al. (2023), underscores the 

importance of CRC in maintaining data integrity in communication systems. They found that 

CRC could detect errors with high accuracy, even under suboptimal transmission conditions. Our 

findings corroborate these results, with the CRC-enabled system successfully detecting errors 

caused by high temperatures and electromagnetic interference, demonstrating that CRC remains 

effective in challenging conditions. However, this study also found that the application of CRC 

adds approximately 5 ms of latency to data transmission. This finding slightly deviates from 

earlier reports that suggest the added latency due to CRC can vary depending on the 

implementation and complexity of the algorithm used. Despite the increase in latency, throughput 

remained stable at 9600 bps in this study, indicating that the system can still operate at the 

expected speed. This suggests that although there is a trade-off between reliability and latency, 

the benefits in terms of error detection outweigh the drawbacks. 

Impact Analysis on Latency and Throughput 

The test results indicate that while the application of CRC increases latency, this impact is 

acceptable given the enhanced reliability achieved. The latency introduced by CRC remains 

within acceptable limits for serial communication applications, particularly in contexts requiring 

high accuracy. Previous research also suggests that in many industrial applications, the additional 



    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

latency caused by error detection can be considered a valuable investment to ensure data integrity. 

The stable throughput of 9600 bps demonstrates that the system can maintain the desired 

transmission speed despite the additional processes involved in calculating and verifying CRC. 

This finding aligns with Nakamura and Watanabe (2008), who indicated that optimizations in 

CRC algorithms can help maintain high throughput while still providing effective error detection. 

Reliability in Extreme Environmental Conditions 

Testing under extreme environmental conditions revealed that the CRC-enabled system 

detected more errors compared to the system without CRC. This underscores the importance of 

implementing CRC in situations where data may be affected by external factors such as high 

temperatures and electromagnetic interference. Previous research has shown that CRC performs 

well under challenging conditions, and the results of this study support these findings. However, 

it is important to note that although CRC is effective in error detection, no method can guarantee 

100% reliability. Therefore, further research is needed to explore combining CRC with other error 

detection techniques, such as checksums or more complex encoding methods, to enhance system 

reliability. 

Implications for Future Research 

Based on the results of this study, several recommendations for future research are 

proposed. First, further optimization of CRC algorithms is necessary, including a comparison of 

different CRC types such as CRC-16 and CRC-32, to determine the most efficient algorithm for 

Arduino serial communication contexts. Additionally, research could explore the application of 

CRC in other communication protocols, such as I2C or SPI, to understand how CRC can enhance 

reliability across various applications. 

V. CONCLUSION AND RECOMMENDATION 

This research successfully implemented an error detection system for Arduino serial 

communication using the Cyclic Redundancy Check (CRC) method. The test results demonstrate 

that the CRC method is effective in detecting errors occurring during data transmission between 

two Arduino microcontrollers. The system accurately identifies and handles errors, both in error-

free data and data modified for testing purposes. During testing, the system proved capable of 

sending data accurately and verifying the integrity of the received data through remainder 

calculation using XOR techniques and CRC polynomials. If the transmitted data matches the 

received data, the resulting remainder is 0, indicating no errors. Conversely, any bit changes in 

the data result in a remainder different from 0, indicating the presence of errors. The application 



 
 
 
 

   
Reliability of Arduino Serial Communication Systems 

186  Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024  
 
 
 

of the CRC method in this system has proven effective in ensuring the reliability of serial 

communication and maintaining data integrity during transmission. 

Based on the findings of this research, several recommendations for future studies are as 

follows: 

Optimization of CRC Algorithms: Further research could compare various CRC 

algorithms, such as CRC-16 and CRC-32, to determine the most efficient algorithm for Arduino 

serial communication. Analyzing differences in speed, memory usage, and error detection 

accuracy will be highly beneficial. Application of CRC in Other Protocols: Research may explore 

the application of CRC in other communication protocols frequently used with Arduino, such as 

I2C or SPI. This aims to understand how CRC can enhance reliability in various applications and 

scenarios. 

Impact Analysis on Latency and Throughput: Subsequent studies should analyze the impact 

of CRC on serial communication latency and throughput. Comparing the performance of systems 

with and without CRC will provide insights into the trade-offs between error detection and overall 

system performance. Testing in Extreme Environmental Conditions: Testing the effectiveness of 

CRC under extreme environmental conditions, such as high temperatures, electromagnetic 

interference, or high humidity, is necessary. This research aims to evaluate how CRC maintains 

data integrity in challenging conditions, providing insights into the system's reliability in more 

difficult environmental situations. Integration with Other Error Detection Methods: Given that no 

method can guarantee 100% reliability, further research could explore combining CRC with other 

error detection techniques, such as checksums or more complex encoding methods, to enhance 

system reliability further. 

REFERENCES 

Alena, R. L., Ossenfort IV, J. P., Laws, K. I., Goforth, A., & Figueroa, F. (2007). Communications 

for integrated modular avionics. IEEE Aerospace Conference Proceedings. 

https://doi.org/10.1109/AERO.2007.352639  

Das, A., & Touba, N. A. (2020). Selective Checksum based On-line Error Correction for 

RRAM based Matrix Operations. Proceedings of the IEEE VLSI Test Symposium, 2020-

April. https://doi.org/10.1109/VTS48691.2020.9107606  

Gianioudis, M., Xirouchakis, P., Loukas, C., Mageiropoulos, E., Ioannou, A., Mousouros, O., 

Mpartzis, S., Papaefstathiou, V., Katevenis, M., & Chrysos, N. (2023). Low-latency 

Communication in RISC-V Clusters. ACM International Conference Proceeding Series, 

11, 73–83. https://doi.org/10.1145/3635035.3635050  

Gunduz, D., Qin, Z., Aguerri, I. E., Dhillon, H. S., Yang, Z., Yener, A., Wong, K. K., & Chae, 

C. B. (2023). Beyond Transmitting Bits: Context, Semantics, and Task-Oriented 

https://doi.org/10.1109/AERO.2007.352639
https://doi.org/10.1109/VTS48691.2020.9107606
https://doi.org/10.1145/3635035.3635050


    
 

Journal of Technology Informatics and Engineering (JTIE) 

Vol. 3 No. 2 August 2024 
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 169-187 

Communications. IEEE Journal on Selected Areas in Communications, 41(1), 5–41. 

https://doi.org/10.1109/JSAC.2022.3223408  

Hadi, A., & Mohammed, M. (2024). Enhancing Data Security through Hybrid Error 

Detection:Combining Cyclic Redundancy Check (CRC) and Checksum Techniques. 

Article in International Journal of Electrical and Electronics Research. 

https://doi.org/10.37391/IJEER.120312  

Häring, I. (2021). Error Detecting and Correcting Codes. Technical Safety, Reliability and 

Resilience, 287–302. https://doi.org/10.1007/978-981-33-4272-9_16  

Li, R. ;, Tian, H. ;, Shi, J. ;, Ji, R. ;, Manske, E., Wu, G., Gao, W., Li, R., Tian, H., Shi, J., Ji, R., 

Dong, D., & Zhou, W. (2024). Impact of Cyclic Error on Absolute Distance Measurement 

Based on Optical Frequency Combs. Sensors 2024, Vol. 24, Page 3497, 24(11), 3497. 

https://doi.org/10.3390/S24113497  

Rajeswari, R. R. (2021). Analysis of Error Detection and Correction in Data Link Layer. 

https://papers.ssrn.com/abstract=3913265  

Rao, S., & Kumar, M. (2015). Analysis and optimization of CRC algorithms for embedded 

applications. IEEE Embedded Systems Letters , 7(4), 125-129. 

Senekane, M., Mafu, M., Maseli, M., & Taele, B. M. (2021). A quantum algorithm for single 

parity check code. IEEE AFRICON Conference, 2021-September. 

https://doi.org/10.1109/AFRICON51333.2021.9570857  

Yang, K., & Wu, P. (1995). CRC algorithms and their application in error detection. IEEE 

Transactions on Communications , 43(11), 3249-3256.  

Yang, W., Du, H., Liew, Z. Q., Lim, W. Y. B., Xiong, Z., Niyato, D., Chi, X., Shen, X., & 

Miao, C. (2023). Semantic Communications for Future Internet: Fundamentals, 

Applications, and Challenges. IEEE Communications Surveys and Tutorials, 25(1), 213–

250. https://doi.org/10.1109/COMST.2022.3223224  

Yen, C. H., & Wu, B. F. (2006). Simple error detection methods for hardware implementation 

of advanced encryption standard. IEEE Transactions on Computers, 55(6), 720–731. 

https://doi.org/10.1109/TC.2006.90  

Yin, P., Chen, H., Xia, Y., Zhang, J., Liu, M., Gu, C., Hou, W., Bermak, A., & Tang, F. (2024). 

High Logic Density Cyclic Redundancy Check and Forward Error Correction Logic 

Sharing Encoding Circuit for JESD204C Controller. IEEE Transactions on Circuits and 

Systems I: Regular Papers, 1–12. https://doi.org/10.1109/TCSI.2024.3420116   

https://doi.org/10.1109/JSAC.2022.3223408
https://doi.org/10.37391/IJEER.120312
https://doi.org/10.1007/978-981-33-4272-9_16
https://doi.org/10.3390/S24113497
https://papers.ssrn.com/abstract=3913265
https://doi.org/10.1109/AFRICON51333.2021.9570857
https://doi.org/10.1109/COMST.2022.3223224
https://doi.org/10.1109/TC.2006.90
https://doi.org/10.1109/TCSI.2024.3420116

