

Journal of Technology Informatics and Engineering (JTIE)
Vol. 3 No. 2 August 2024

E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

Received on June 27, 2024; Revised July 02, 2024; Accepted July 29, 2024; Published on August 21, 2024

Doi: 10.51903/jtie.v3i2.187

Error-Free Arduino Communication: Integrating Hamming Code for

UART Serial Transmission

Budi Raharjo1, Fujiama Diapoldo Silalahi1

Email: budiraharjo@stekom.ac.id, fujiama@stekom.ac.id,

Orcid: 0000-0001-6192-0888, 0009-0007-2162-2051,
1University of Science and Computer Technology, Semarang, Indonesia, 50192

*Corresponding Author

Abstract

Serial communication is a fundamental method for data transfer in electronic devices, particularly in

Arduino-based systems. However, existing protocols, such as Universal Asynchronous

Receiver/Transmitter (UART), often lack robust error detection mechanisms, leading to potential data

integrity issues. This study aims to address the knowledge gap regarding error detection in UART

communication by implementing Hamming Code, a well-established method for detecting and correcting

single-bit errors. The research employs a systematic approach, including data encoding before

transmission and decoding with error correction at the receiver end. The results demonstrate that the

integration of the Hamming Code significantly enhances the reliability of data transmission, reducing error

rates and improving overall system performance. The implications of this research extend to various

applications requiring high data integrity, such as industrial control systems and Internet of Things (IoT)

devices. By providing a practical solution to the challenges of error detection in serial communication, this

study contributes to the advancement of reliable communication systems in modern technology.

Keywords: Serial Communication, Hamming Code, Error Detection, Arduino, Data Integrity.

I. INTRODUCTION

Serial communication is an essential method for data transfer between electronic devices,

including Arduino-based systems (Chioran & Valean, 2020; Jamdar et al., 2018). This method is

widely utilized due to its efficiency in transmitting data through a simple communication channel.

One popular serial communication protocol is the Universal Asynchronous Receiver/Transmitter

(UART), which facilitates data transmission and reception without the need for external

synchronization (Gupta & Charan, 2024; Jamdar et al., 2018; Lin, 2020). However, despite its

convenience, UART transmission processes are often vulnerable to interference or noise, which

can result in errors in the received data.

Errors in data transmission can lead to significant damage, especially in applications that

require high accuracy and data integrity, such as industrial control systems, medical devices, and

Internet of Things (IoT) applications (Misra et al., 2022; Serror et al., 2021). Many current serial

communication systems lack built-in mechanisms to detect or correct bit errors in transmitted

data. This gap in reliability can lead to serious functional failures due to undetected errors.

mailto:budiraharjo@stekom.ac.id
mailto:fujiama@stekom.ac.id
https://orcid.org/0000-0001-6192-0888
https://orcid.org/0009-0007-2162-2051

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

To address this issue, this study aims to C (Mythry et al., 2024; Salamea et al., 2020) in

UART-based serial communication on the Arduino platform. The Hamming Code was selected

due to its proven ability to efficiently detect and correct single-bit errors (Baviera et al., 2020;

Potestad-Ordóñez et al., 2020; Xie et al., 2023). The implementation of this method includes data

encoding before transmission, as well as decoding and error correction at the receiver.

Consequently, it is anticipated that the application of the Hamming Code will enhance the

reliability of serial communication and reduce error rates in data transmission. The contribution

of this research lies in the development of a more robust and reliable communication system,

providing a practical solution to improve the quality and reliability of transmitted data.

Additionally, the results of this study are expected to offer valuable insights for further

advancements in information and communication technology, particularly in applications

requiring high data accuracy.

II. LITERATURE REVIEW

A. Error Detection

Error detection is a critical process aimed at identifying and addressing errors that arise

within a system. These errors can stem from various sources, such as human mistakes, hardware

failures, or software bugs. Effective error detection is essential to ensure that the system operates

correctly and delivers the expected outcomes (Avižienis et al., 2004). There are several types of

errors (Jeffries et al., 2022), including syntax errors, which occur due to mistakes in the grammar

or structure of the code, such as unmatched parentheses or misspelled keywords. Logical errors

arise when the algorithm fails to produce the correct output, as seen in faulty if-else conditions.

Runtime errors manifest during program execution, like division by zero or accessing an invalid

array index.

Error detection methods encompass several approaches. Testing involves techniques such

as unit testing, integration testing, and system testing to identify code errors. Debugging focuses

on locating and fixing errors by enabling developers to step through code and inspect variable

values at each step. Logging involves adding log statements to the code to track program

execution and help identify the source of errors. Validation ensures that the product meets user

requirements, while verification ensures that the product is built correctly according to

specifications. Tools like lint, static code analysis tools, and dynamic analysis tools assist in

identifying errors before and after compilation.

The benefits of error detection are manifold. It enhances system quality by identifying

and correcting errors, leading to an improved user experience. Early error detection reduces long-

term maintenance costs. Additionally, error detection improves security by identifying

Integrating Hamming Code for UART Serial Transmission

190 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

vulnerabilities that malicious actors could exploit. A system free from errors is generally more

reliable and trustworthy over time.

However, error detection is not without its challenges. Complex systems with numerous

interacting components make error detection more difficult. Some errors may be hidden and only

surface under specific conditions, making them hard to reproduce. Furthermore, certain error

detection techniques may impact system performance, necessitating a balance between error

detection and system efficiency. By employing appropriate techniques and tools, error detection

can be conducted effectively, ensuring that the system functions as intended and reducing the

likelihood of future issues.

B. Error Correction

Error detection involves the identification and resolution of issues that arise within a

system. These errors can originate from various sources, including human mistakes, hardware

failures, or software bugs. The process is critical in ensuring that the system operates properly

and produces the desired output (Banerjee et al., 2021; Chandra & Toueg, 1996). Errors can be

categorized into several types, as syntax errors occur when there is a mistake in the programming

language rules or code structure, such as unmatched parentheses or incorrect keyword spelling.

Logical errors arise when the algorithm fails to produce the correct outcome, as seen in incorrect

if-else conditions. Runtime errors happen during the program's execution, such as dividing by

zero or accessing an invalid array index.

Several techniques are utilized for error detection. Testing involves various methods,

such as unit testing, integration testing, and system testing, to detect errors in the code. Debugging

is the process of finding and correcting errors within the code. Debugging tools allow developers

to step through the code and inspect variable values at each stage. Logging involves including log

statements in the code to track program execution and help identify where errors occur. Validation

ensures that the product meets user requirements, while verification ensures that the product is

built according to specified standards. Tools such as lint, static code analysis tools, and dynamic

analysis tools assist in detecting errors before and after compilation.

The benefits of error detection are significant. By identifying and correcting errors, the

overall quality of the system improves, resulting in a better user experience. Detecting and fixing

errors early in the development cycle reduces long-term maintenance costs. Error detection also

enhances security by identifying vulnerabilities that malicious actors could exploit. A system free

from errors is generally more dependable in the long term. However, error detection presents

several challenges (Nsaif et al., 2021; Yu & Zhang, 2022). Complex systems with many

interacting components make error detection more difficult. Some errors may not be immediately

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

visible and only emerge under specific conditions that are hard to reproduce. Additionally, some

error detection techniques can affect system performance, necessitating a balance between error

detection and performance. By leveraging appropriate techniques and tools, error detection can

be carried out effectively, ensuring the system functions as expected and minimizing the

likelihood of future issues.

C. Arduino Serial

Arduino Serial refers to the communication method between an Arduino board and a

computer or other devices through a serial interface (Asadi, 2023; Maemunah & Riasetiawan,

2018). This technique is crucial and frequently used in data communication, programming, and

debugging for Arduino projects (Qurrata, 2018). The basics of Arduino Serial communication

include several key components. The serial interface allows data to be sent one bit at a time over

a communication line. On Arduino, this communication is typically conducted through a USB

port connected to a computer. Arduino is equipped with a serial port that can be utilized for

interacting with other devices or programming the board itself. The baud rate measures the data

transmission speed in bits per second (bps), and the baud rate needs to be consistent between

devices to ensure proper data transfer. Common baud rates include 9600, 115200, and 19200.

Arduino Serial serves several primary functions. First, it is used for programming, where

the serial interface uploads programs from the computer to the Arduino board. During

programming through the Arduino IDE, data is transmitted to the board via serial communication.

Second, it facilitates data communication between Arduino and the computer, which is

particularly useful for applications such as sending sensor data to a computer or remotely

controlling Arduino. Third, serial communication is a valuable tool for debugging, allowing

messages to be sent via the serial port. The code output can be viewed in the Arduino IDE’s Serial

Monitor, aiding in identifying and resolving errors.

Key methods used in Arduino Serial include the following. The `Serial.begin()` function

initiates serial communication at a specified baud rate. For instance, `Serial.begin(9600);` starts

communication at 9600 bps. The `Serial.print()` and `Serial.println()` functions send data from

Arduino to the computer, with the latter adding a new line at the end of the data. The `Serial.read()`

function reads data received through the serial port, often used to read input from the computer

or other devices. The `Serial.available()` function provides the number of bytes of data ready to be

read from the serial port. Lastly, the `Serial.flush()` function clears any data remaining in the serial

buffer. The advantages of using Arduino Serial include ease of debugging, as it allows developers

to check variable values and code execution flow during development (Kondaveeti et al., 2021;

Martínez-Santos et al., 2017). It also provides efficient and simple data communication between

Integrating Hamming Code for UART Serial Transmission

192 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

Arduino and other devices. Additionally, Arduino Serial offers flexibility, supporting a wide

range of applications from sensor monitoring to device control through serial input.

However, using Arduino Serial presents certain challenges (Rafi, 2019). Ensuring the

correct baud rate is crucial, as mismatched baud rates can result in unreadable data. The limited

size of the serial buffer may lead to data loss if the buffer overflows. Moreover, signal interference

and noise in complex serial communication can affect communication quality. Arduino Serial is

a highly valuable and flexible tool for Arduino-based project development. With a solid

understanding of its fundamental concepts and techniques, you can leverage serial communication

to enhance the performance and effectiveness of your projects (Muhajir, F., Efendi, S. &

Sutarman, 2016).

D. Universal Asynchronous Receiver-Transmitter (UART)

UART (Universal Asynchronous Receiver-Transmitter) is a serial communication

method used to transfer data between devices. UART operates by transmitting data sequentially,

bit by bit, through a single communication channel, making it one of the most widely implemented

serial communication methods in computer systems and electronic devices (Agus, 2019). The

operation of UART involves asynchronous transmission, where data is sent without an external

clock signal. The transmission speed, or baud rate, must be agreed upon between the transmitting

and receiving devices to ensure proper synchronization of communication. Data is transmitted in

a frame format consisting of several components: the start bit, which indicates the beginning of

data transmission; data bits, which form the core of the frame and typically consist of 7 or 8 bits;

an optional parity bit, used for error detection and can be set to check for even or odd parity; and

one or more stop bits, which signify the end of the data frame (Mukti, R., & Fadilah, 2018).

In UART communication, the transmitter sends data by converting parallel data from the

CPU or system into a serial format for transmission. The receiver then converts the serial data

back into parallel format for processing by the CPU or system. Key UART settings include baud

rate, which measures data transmission speed in bits per second (bps) and must match between

devices; data bits, usually 7 or 8 bits per frame; parity, an optional error-checking method that

can be set to none, even, or odd; and stop bits, typically one or two, which allow extra time for

synchronization between data frames. UART offers several advantages, including simplicity, as

it is easy to implement, making it ideal for applications that do not require high data transmission

speeds. Its cost-effectiveness also makes it a cheaper option compared to more complex serial

communication protocols. Additionally, UART is flexible and can be used in a variety of

applications, from microprocessor communication to peripheral connections.

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

However, UART has some limitations. It is less suitable for applications requiring very high data

transmission speeds, as the speed is constrained by the baud rate that devices can handle. The

absence of a clock signal in this asynchronous protocol can lead to data transmission errors if

synchronization is not accurate. Furthermore, UART is more effective for short-distance

communication, as signal issues and interference can pose challenges over longer distances

(Kusnadi, 2021). UART is frequently used for communication between microprocessors or

microcontrollers in embedded systems, connecting peripherals such as sensors or GPS modules

to computers or microcontrollers, and enabling wireless communication through Bluetooth and

Wi-Fi modules. Despite its limitations in speed and range, UART remains a popular choice for

communication systems due to its ease of implementation and low cost (Novianti, 2019).

III. RESEARCH METHOD(S)

A. System Design

The methodology begins with system design, which involves selecting the primary

components: the Arduino Uno and the DHT11 sensor. This design encompasses a schematic

representation illustrating how the sensor is connected to the Arduino and how temperature and

humidity data will be collected and processed.

B. Implementation of Hamming Code

The implementation of the Hamming Code is divided into two main parts: the transmitter

and the receiver. For the transmitter, the encoding process involves adding parity bits at specific

positions within the data array. These parity bits are computed using XOR logic operations on the

relevant data bits. An encoding flowchart is constructed to depict the steps in this process,

including the determination of parity bit positions and the calculation of their values. For the

receiver, after the data is transmitted, the received codeword is stored in an array variable. The

decoding process is then carried out to verify data integrity and correct any detected errors. The

steps involved in decoding are also illustrated in a flowchart to provide a clear overview of the

workflow.

C. Testing and Analysis

Testing is conducted to evaluate the system’s performance in both functional and non-

functional aspects. Functional testing involves measuring the accuracy of temperature readings

and the conversion of data into a 12-bit format. Results are displayed on the Arduino IDE serial

monitor for further analysis. Non-functional testing covers aspects such as processing speed,

system reliability, and the effectiveness of the encoding process. This testing also includes

modifying encoded data to assess the system's capability to detect and correct errors.

Integrating Hamming Code for UART Serial Transmission

194 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

D. Evaluation of Results

The results from functional and non-functional testing are analyzed to ensure that the

system meets the established requirements. Data obtained from these tests are compared against

expected standards to evaluate overall system performance.

IV. RESULT/FINDINGS AND DISCUSSION

A. System Design

System design involves creating an effective and efficient information system to support

organizational goals. This process encompasses several critical stages, including needs analysis,

implementation, and maintenance. During this phase, information is gathered from users and

stakeholders to understand business needs and identify the necessary features for the system. The

system architecture is then designed, incorporating technical specifications and user interface

designs. This design phase also includes the development of flowcharts, data models, and other

detailed specifications. By following these steps, system design helps organizations achieve

operational efficiency and support the attainment of strategic objectives.

Figure1. Schematic of the DHT11 sensor and Arduino Uno design

B. Hamming Code Design for the Transmitter

The design of the Hamming Code for the transmitter ensures that the system can meet its

non-functional requirements, particularly its capability for data encoding. This encoding process

generates codewords that include the necessary parity bits to detect and correct errors. In the

Hamming Code, parity bits are added at specific positions in the array, such as indices 0, 1, 3, 7,

and x. These positions are selected based on powers of two, allowing the method to detect errors

in more than one bit, including two-bit errors, through XOR operations. By calculating each parity

bit from specific data bits and utilizing XOR, the system ensures that errors during data

transmission can be detected and corrected.

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

The encoding process on the transmitter side involves determining the positions and

calculations of parity bits and placing them in the designated positions. These parity bits are used

to verify the integrity of the transmitted data, enabling the receiver to detect and correct errors,

thereby ensuring that the received data remains accurate and intact.

Figure 2. Hamming Code Encoding Flowchart for the Transmitter

C. Hamming Code Design for the Data Receiver

The received codeword is stored in an array variable, with the array length adjusted to

match the number of data bits received from the encoding process. The decoding process using

the Hamming Code involves storing the data, error checking, error correction, and separating the

codeword from the original data. Initially, the received codeword is stored in an array variable

according to the number of bits encoded during the encoding process. Next, error checking is

Integrating Hamming Code for UART Serial Transmission

196 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

performed using the Hamming Code method, which involves recalculating the parity bits and

comparing them with the received parity bits to detect errors.

If errors are detected, the position of the erroneous bit is identified based on the parity bit

calculations, and the error is corrected by flipping the value of the erroneous bit. After error

correction, the parity bits are removed, leaving only the original data. The corrected codeword

and original data are then separated for the next steps. The corrected original data is converted

from binary to decimal format, and the required temperature or other data is displayed based on

the conversion results. This decoding process ensures that the received data is error-free and ready

for use.

Figure 3. Decoding Flowchart for the Receiver

D. Implementation

Implementing the Hamming Code on the Arduino Uno provides an efficient method for

detecting and correcting errors in digital data transmission. This system utilizes two Arduino Uno

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

microcontrollers connected as a transmitter and receiver. On the transmitter side, the Arduino

Uno is equipped with a DHT11 sensor that measures temperature and humidity. The data collected

from this sensor is encoded using the Hamming Code, which adds parity bits to detect and correct

errors. The encoded data is then transmitted via serial communication to the receiving Arduino.

On the receiver side, the Arduino Uno receives the transmitted data and decodes it using

the Hamming Code to identify and correct any errors that may have occurred during transmission.

The corrected data is then displayed or utilized according to application needs. This

implementation enhances the reliability of the communication system, ensuring that transmitted

data is more accurate, particularly in applications requiring environmental monitoring such as

temperature and humidity. The Hamming Code method can be applied to various applications

requiring reliable and error-free data transmission.

Figure 4. Implementation of the Arduino Uno and DHT11

E. Testing and Analysis

1. Functional and Non-Functional Testing

Testing evaluates both functional and non-functional requirements based on the design and

implementation results. Functional requirements encompass the expected features and functions

operating according to the initial design, while non-functional requirements cover aspects such as

performance, reliability, and system efficiency. The goal of this testing is to analyze whether the

system operates as intended. Results will be analyzed to ensure that functional requirements are

met and that system performance aligns with expected standards. The testing results displayed on

the Arduino IDE serial monitor, as shown in the figure below, illustrate how data and testing

information are presented, providing insights into system performance and implementation

effectiveness.

Integrating Hamming Code for UART Serial Transmission

198 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

Figure 5. Testing Menu

Based on the design and implementation, functional and non-functional testing was

conducted with the temperature set at 24°C, and the temperature data encoded in a 12-bit format.

The results of this process are illustrated in Figure 7, which shows how the encoded temperature

data is displayed and processed during testing. Functional testing focuses on verifying whether

the system accurately measures temperature and converts the data into the 12-bit format as

planned. Non-functional testing includes evaluating other aspects such as processing speed,

system reliability under these conditions, and the effectiveness of the encoding process. Figure 7

provides a visualization of the testing results, demonstrating how the encoded temperature data is

displayed and processed, allowing for an assessment of system performance and accuracy.

Figure 6. Testing Data

The figure below displays the system's capability to meet functional and non-functional

requirements. Functional requirements involve the system's ability to accurately measure

temperature data, while non-functional requirements pertain to encoding temperature data using

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

the Hamming Code, aimed at enhancing data reliability by detecting and correcting errors that

may arise during transmission. Subsequent testing involves modifying the encoded data by

selecting random positions. The objective of this process is to test the system's ability to detect

and correct errors intentionally introduced into the encoded data. By altering data at random

positions, this testing evaluates the effectiveness of the Hamming Code in maintaining data

integrity and the system's capability to handle and correct errors. The figure below provides an

overview of how the system manages encoded data and tests its robustness against introduced

errors.

Figure: Testing 1-bit Error at Position 4

In the figure, a single bit of data is altered at position 4, causing an error at that bit. The

system is capable of detecting the type of error and correcting the affected bit, thereby maintaining

data integrity despite transmission errors. The table below will present a manual calculation using

the Hamming Code method to detect and correct errors in temperature data set at 24°C. The table

will outline the steps taken in the error detection and correction process, demonstrating how the

Hamming Code method can be used to identify and correct errors in encoded data.

Table: Manual Calculation Using the Hamming Code Method for 24°C Data.

Integrating Hamming Code for UART Serial Transmission

200 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

V. CONCLUSION AND RECOMMENDATION

This research successfully demonstrates the integration of Hamming Code into UART

serial communication for Arduino systems, addressing the critical issue of data integrity in

electronic communications. The implementation of the Hamming Code has been shown to

significantly reduce error rates during data transmission, thereby enhancing the reliability of the

system. The findings indicate that by incorporating error detection and correction mechanisms,

the performance of Arduino-based applications can be improved, making them more suitable for

environments where data accuracy is paramount, such as in industrial automation and IoT

applications.

Recommendations for Future Research

Future research should explore the scalability of the Hamming Code implementation in

more complex communication systems, including multi-device networks and higher data rates.

Additionally, investigating alternative error correction codes, such as Reed-Solomon or Turbo

Codes, could provide insights into further enhancing data integrity. It would also be beneficial to

conduct real-world testing in various environmental conditions to assess the robustness of the

proposed solution. Finally, integrating machine learning techniques for adaptive error correction

could be a promising avenue for future studies, potentially leading to smarter and more resilient

communication systems.

REFERENCES

Agus, F. (2019). Sistem Komunikasi dan Pengkodean Data pada Arduino . Jurnal Ilmu Komputer,

15(4), 25-33.

Asadi, F. (2023). Serial Communication. 179–199. https://doi.org/10.1007/978-1-4842-9600-4_5

Avižienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy

of dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing, 1(1), 11–33. https://doi.org/10.1109/TDSC.2004.2

Banerjee, S., Samynathan, B., Abraham, J. A., & Chatterjee, A. (2021). Real-Time Error

Detection in Nonlinear Control Systems Using Machine Learning Assisted State-Space

Encoding. IEEE Transactions on Dependable and Secure Computing, 18(2), 576–592.

https://doi.org/10.1109/TDSC.2019.2903049

Baviera, E., Schettino, G. M., Tuniz, E., & Vatta, F. (2020). Software Implementation of Error

Detection and Correction against Single-Event Upsets. 2020 28th International Conference

on Software, Telecommunications and Computer Networks, SoftCOM 2020.

https://doi.org/10.23919/SOFTCOM50211.2020.9238173

Chandra, T. D., & Toueg, S. (1996). Unreliable failure detectors for reliable distributed systems.

Journal of the ACM (JACM), 43(2), 225–267. https://doi.org/10.1145/226643.226647

https://doi.org/10.1007/978-1-4842-9600-4_5
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2019.2903049
https://doi.org/10.23919/SOFTCOM50211.2020.9238173
https://doi.org/10.1145/226643.226647

Journal of Technology Informatics and Engineering (JTIE)

Vol. 3 No. 2 August 2024
E-ISSN: 2987-9434; P-ISSN : 2988-0343, Pages 188-202

Chioran, D., & Valean, H. (2020). Arduino based Smart Home Automation System A Simple and

Efficient Serial Communication Method. IJACSA) International Journal of Advanced

Computer Science and Applications, 11(4). www.ijacsa.thesai.org

Gupta, A., & Charan, C. (2024). Analysis of Universal Asynchronous Receiver-

Transmitter(UART). Proceedings - 2nd IEEE International Conference on Device

Intelligence, Computing and Communication Technologies, DICCT 2024, 194–198.

https://doi.org/10.1109/DICCT61038.2024.10532820

Jamdar, V. T., Deosarkar, S. B., & Khobragade, S. V. (2018). An Effective Arduino Based

Communication Module for Railway Transportation System. Proceedings of the 2nd

International Conference on Intelligent Computing and Control Systems, ICICCS 2018,

749–752. https://doi.org/10.1109/ICCONS.2018.8662959

Jeffries, B., Lee, J. A., & Koprinska, I. (2022). 115 Ways Not to Say Hello, World!: Syntax Errors

Observed in a Large-Scale Online CS0 Python Course. Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE, 1, 337–343.

https://doi.org/10.1145/3502718.3524809

Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S.

(2021). A systematic literature review on prototyping with Arduino: Applications,

challenges, advantages, and limitations. Computer Science Review, 40, 100364.

https://doi.org/10.1016/J.COSREV.2021.100364

Kusnadi, A. (2021). Komunikasi Serial dan Metode Pengkodean pada Arduino . Jurnal Teknologi

Dan Sistem Komputer, 9(4), 101-110.

Lin, L. (M. S. in E. (2020). Applying Universal Verification Methodology on a Universal

Asynchronous Receiver/ Transmitter design. https://doi.org/10.26153/TSW/11664

Maemunah, M., & Riasetiawan, M. (2018). The Architecture of Device Communication in

Internet of Things Using Inter-Integrated Circuit and Serial Peripheral Interface Method.

Proceedings - 2018 4th International Conference on Science and Technology, ICST 2018.

https://doi.org/10.1109/ICSTC.2018.8528663

Martínez-Santos, J. C., Acevedo-Patino, O., & Contreras-Ortiz, S. H. (2017). Influence of

Arduino on the Development of Advanced Microcontrollers Courses. Revista

Iberoamericana de Tecnologias Del Aprendizaje, 12(4), 208–217.

https://doi.org/10.1109/RITA.2017.2776444

Misra, S., Roy, C., Sauter, T., Mukherjee, A., & Maiti, J. (2022). Industrial Internet of Things for

Safety Management Applications: A Survey. IEEE Access, 10, 83415–83439.

https://doi.org/10.1109/ACCESS.2022.3194166

Muhajir, F., Efendi, S. & Sutarman. (2016). Deteksi Dan Koreksi Multi Bit Error Dengan Partition

Hamming Code. Jurnal Teknovasi, III(2), Pp. 2-3.

Mukti, R., & Fadilah, A. (2018). Analisis dan Implementasi Hamming Code untuk Sistem

Komunikasi . Jurnal Sistem Dan Informatika, 14(2), 56-63.

http://www.ijacsa.thesai.org/
https://doi.org/10.1109/DICCT61038.2024.10532820
https://doi.org/10.1109/ICCONS.2018.8662959
https://doi.org/10.1145/3502718.3524809
https://doi.org/10.1016/J.COSREV.2021.100364
https://doi.org/10.26153/TSW/11664
https://doi.org/10.1109/ICSTC.2018.8528663
https://doi.org/10.1109/RITA.2017.2776444
https://doi.org/10.1109/ACCESS.2022.3194166

Integrating Hamming Code for UART Serial Transmission

202 Journal of Technology Informatics and Engineering (JTIE), Vol 3 No 3 August 2024

Mythry, S. V., Harsha Vardhini, P. A., Bandaru, T., Gunamgari, S. R., Bandari, K., & Balagoni,

N. (2024). The Low Power Implementation of Hamming-Code Encoder and Decoder using

GDI Logic for Error Free Transmission and Reception in Digital Data Communication. 2024

2nd International Conference on Computer, Communication and Control, IC4 2024.

https://doi.org/10.1109/IC457434.2024.10486366

Novianti, R. (2019). Prinsip-Prinsip Pengkodean dan Pengoreksian Kesalahan . Jakarta: Penerbit

Universitas Indonesia.

Nsaif, Y. M., Hossain Lipu, M. S., Ayob, A., Yusof, Y., & Hussain, A. (2021). Fault Detection

and Protection Schemes for Distributed Generation Integrated to Distribution Network:

Challenges and Suggestions. IEEE Access, 9, 142693–142717.

https://doi.org/10.1109/ACCESS.2021.3121087

Potestad-Ordóñez, F. E., Tena-Sánchez, E., Chaves, R., Valencia-Barrero, M., Acosta-Jiménez,

A. J., & Jiménez-Fernández, C. J. (2020). Hamming-code based fault detection design

methodology for block ciphers. Proceedings - IEEE International Symposium on Circuits

and Systems, 2020-October. https://doi.org/10.1109/ISCAS45731.2020.9180451

Qurrata, H. (2018). Implementasi Hamming Code pada Proyek Arduino . Yogyakarta: Penerbit

Andi.

Rafi, I. (2019). Sistem Komunikasi Data dengan Mikrokontroler Arduino . Jurnal Teknologi Dan

Informatika, 12(2), 89-96.

Salamea, H. M. T., Torres, D. D. T., Cardenas, P. D. U., & Onate, C. U. (2020). Implementation

of the hamming code for the detection and correction of errors in a telerobotic system using

an industrial communication protocol. 2020 IEEE ANDESCON, ANDESCON 2020.

https://doi.org/10.1109/ANDESCON50619.2020.9272049

Serror, M., Hack, S., Henze, M., Schuba, M., & Wehrle, K. (2021). Challenges and Opportunities

in Securing the Industrial Internet of Things. IEEE Transactions on Industrial Informatics,

17(5), 2985–2996. https://doi.org/10.1109/TII.2020.3023507

Xie, H., Qi, Y., & Alyousuf, F. Q. A. (2023). Designing an ultra-efficient Hamming code

generator circuit for a secure nano-telecommunication network. Microprocessors and

Microsystems, 103, 104961. https://doi.org/10.1016/J.MICPRO.2023.104961

Yu, J., & Zhang, Y. (2022). Challenges and opportunities of deep learning-based process fault

detection and diagnosis: a review. Neural Computing and Applications 2022 35:1, 35(1),

211–252. https://doi.org/10.1007/S00521-022-08017-3

https://doi.org/10.1109/IC457434.2024.10486366
https://doi.org/10.1109/ACCESS.2021.3121087
https://doi.org/10.1109/ISCAS45731.2020.9180451
https://doi.org/10.1109/ANDESCON50619.2020.9272049
https://doi.org/10.1109/TII.2020.3023507
https://doi.org/10.1016/J.MICPRO.2023.104961
https://doi.org/10.1007/S00521-022-08017-3

