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Optimizing AI Performance in Industry: A Hybrid Computing
Architecture Approach Based on Big Data

E)stract

In the era of Industry 4.0, the integration of artificial intelligence (Al) and big data analytics in the
industrial sector demands high-performance computing infrastructure to handle increasingly complex and
voluminous datasets. This study investigates the optimization of Al performance through the
implementation of a hybrid computing architecture, integrating CPUs, GPUs, FPGAs, and edge-cloud
computing. The research aims to enhance processing speed, model accuracy, and energy efficiency,
addressing the limitations of standalone computing systems. A quantitative methodology was employed,
using over 1 TB of industrial data from loT sensors and production logs. A hybrid architecture was
implemented with dynamic workload scheduling to distribute tasks efficiently across computational
components. Performance metrics included processing time, model accuracy, energy consumption, and
cost analysis. Results demonstrated that hybrid architectures significantly improved performance: the
CPU-GPU combination reduced processing times to 650 ms, increased model accuracy to 88.3%, and
achieved an energy consumption of 2.1 kWh. Meanwhile, the CPU-FPGA configuration, while slightly less
accurate (87.5%), proved more energy-efficient at 1.3 kWh. Al models developed using hybrid systems
exhibited superior predictive accuracy, with Mean Squared Error (MSE) as low as 0.0248 and R? of 0.91.
The study concludes that hybrid computing architecture is a transformative approach for optimizing Al
systems in industrial applications, balancing speed, accuracy, and energy efficiency. These findings provide
actionable insights for industries aiming to leverage advanced computing technologies for improved
operational efficiency and sustainability. Future research should focus on advanced workload scheduling
and cost-effectiveness strategies to maximize the potential of hybrid systems

Keywords: Hybrid Computing Architecture, Al Optimization, Big Data Analytics, Edge-Cloud Integration,
Energy Efficiency in Computing.

INTRODUCTION
In the erﬁ[ndustryél.(],AI and big data have become essential pillars supporting various sectors,

ranging from manufacturing and healthcare to transportation. The implementation of Al within
the industrial sector presents significant opportunities for automation, efficiency enhancement,
and data-driven decision-making (Ahmad et al., 2022). At the same timeﬂjg data provides the
volume, variety, and velocity of data needed to train advanced Al models. The combination of Al
and big data enables companies to conduct more accurate predictive analyses and respond more
effectively to market changes (Alahakoon et al., 2023). Nevertheless, deploying Al and big data
on an industrial scale requires computing infrastructure capable of efficiently managing data
complexity. One emerging solution to address this challenge is hybrid computing architecture,
which integrates various computing technologies, such as CPUs, GPUs, and cloud computing, to

maximize system performance (Stergiou & Psannis, 2022).

Hybrid computing architecture combines the strengths of different hardware and computing
services to handle diverse data processing tasks more efficiently. For instance, CPUs manage

logical processing tasks, while GPUs excel in parallel processing, such as in deep learning and




big data analytics (Devi et al., 2022). Additionally, specialized hardware like FPGAs can
accelerate specific tasks that require intensive processing (Bobda et al., 2022). This combination
allows for more efficient and optimal workload distribution, enabling systems to process large
and complex data quickly. This approach is increasingly relevant in industrial contexts, where

data processing scale and speed are critical competitive factors (Ayachi et al., 2021).

However, certain research gaps remain unaddressed regarding the implementation of hybrid
computing architectures in developing Al models for the industrial sector. Previous studies have
primarily focused on the computational efficiency of individual technologies, such as CPUs,
GPUs, or FPGAs, but few have examined in depth how synchronization among these hardware
components can be optimized within a single hybrid computing system (Muralidhar et al., 2022).
Zhang et al. (2022) demonstrated improved performance when GPUs are used for parallel tasks;
however, this study did not explore how CPU and GPU synchronization in the context of big data
can be optimized simultaneously. This research aims to explore how coordination among CPUs,

GPUs, and FPGAs can be optimized for large-scale industrial data processing (Zhanget al., 2022).

Although edge computing and cloud computing technologies have often been applied
independently, studies exploring how these appmache%n be integrated to maximize benefits in
industrial AI model development are still lacking (Liu et al., 2022). Huang et al. (2023) discuss
the potential of edge computing for real-time applications, but they do not explain how edge
computing and cloud can work together to manage diverse and dynamic data (Huang et al., 2023).
This study fills this gap by proposing a hybrid approach that combines edge computing for local
data processing and cloud computing for further analysis, resulting in faster and more responsive

performance.

Additionally, previous studies often focus on Al algorithm development, while giving less
attention to how computing infrastructure can be optimized to suppor‘tm development and
deployment of more complex Al models (Baccour et al.,, 2022). Kristian et al. (2024) highlight
the importance of algorithm efficiency in managing big data but do not discuss how computing
architecture can support sustainable Al algorithm development in a highly dynamic industrial
environment (Kristian et al., 2024). This study addresses this gap by examining how hybrid
computing infrastructure can be used to accelerate AI model training and facilitate faster iteration

in industrial scenarios.

There are also limitations in the literature regarding the cost and energy efficiency impacts of
implementing hybrid computing architecture on an industrial scale. While many studies focus on

performance efficiency, few address the sustainability of operations in industrial contexts (Murino




et al., 2023). Solanki et al. (2022) suggest that using GPUs and FPGAs can enhance computing
performance; however, their study does not discuss the energy and cost implications associated
with implementing these technologies in the long term (Solanki et al., 2022). This study
contributes by examining how energy-efficient cloud computing combined with specialized
hardware like GPUs can reduce environmental impact and operational costs while maintaining

high performance.

Thus, this study offers a new contribution by addressing four research gaps: optimization of
synchronization among hardware components, integration of edge and cloud computing,
optimization of computing infrastructure to support Al algorithm development, and evaluation of
cost and energy efficiency in applying hybrid computing architecture within the industrial sector.
This research not only provides technical solutions to overcome challenges in large-scale Al
model development but also offers a more comprehensive perspective on hybrid computing
architecture implementation strategies in the industry. This approach is expected to provide
clearer guidance for practitioners and researchers in leveraging modern computing technology to

enhance industrial competitiveness and operational efficiency.

II. LITERATURE REVIEW

A. Hybrid Computing Architecture

Hybrid computing architecture is one of the latest approaches that combines various computing
technologies, sucha CPUs, GPUs, FPGAs, as well as cloud and edge computing, within a single
system designed to enhance performance and efficiency in big data processing and Al
development (Abbaszadeh Shahri et al, 2022). This architecture provides flexibility in
distributing workloads among different hardware components, each with unique strengths in
handling specific computational tasks (Mithas et al., 2022). Jiang et al. (2023) demonstrate that
using CPUs for tasks requiring logical processing and GPUs for parallel processing can
significantly accelerate big data processing times (Jiang et al., 2023). FPGAs are also utilized in
scenarios where computational tasks require specific acceleration, providing high flexibility in

addressing diverse industrial needs (Nain et al., 2022).

However, much prior research has focused on the application of single computing technologies
without in-depth discussion on how synchronization ﬁong these various components can be
optimized within a single hybrid architecture (Rammer et al., 2022). Zhang et al. (2022) highlight
the efficiency of GPUs in accelerating parallel tasks but do not provide solutions regarding
integration with CPUs and FPGAs to create a more cohesive system (Zhang et al., 2&2). This

study identifies that optimizing synchronization among hybrid computing components is a crucial
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challenge that needs to be addressed to enhance overall system performance, particularly in big
data processing in industrial contexts. This research will explore how component coordination
can be improved through dynamic workload scheduling and other optimization strategies (Bal et

al., 2022).

B. Integration of Cloud Computing and Edge Computing

In addition to hardware integratiow critical aspect of hybrid computing architecture is the
integration of cloud computing and edge computing. Edge computing, which processes data near
its source, is highly effective in applications requiring real-time response and low latency, such
as sensor data processing from IoT (Intemet of Things) devices in the field (Kong et al., 2022).
On the other hand, cloud computing offeﬁreater processing and storage capacities, making it
ideal for more in-depth data analysis. Li et al. (2022) identify that edge computing can reduce
network load and accelerate decision-making in industrial applications. However, their study does
not address how edge computing and cloud can be optimally integrated to create an efficient data

flow, particularly in complex and dynamic industrial scenarios (Li et al., 2022).

This rese&h seeks to address these limitations by offering a hybrid approach that combines the
strengths of edge computing for local initial data processing and cloud computing for further data
analysis (Anees et al., 2023). This combination is crucial in the context of big data, where large
data volumes require a system capable ofa"ficient]y distributing processing loads between local
devices and the cloud (Raeisi-Varzaneh et al, 2023). Ali et al. (2022) also emphasizes the
importance of scalability in hybrid computing architecture, particularly when facing fluctuating
computational workloads. Optimal integration between edge computing and the cloud enables
companies to adjust their computing capacity more flexibly in response to changing demands (Ali

et al., 2022).
C. Optimization of Computing Infrastructure for AI Model Development

The development of more complex Al models at an industrial scale requires a computing
infrastructure capable of supporting rapid and efficient development cycles (Tatineni & Chakilam,
2024). However, most existing literature remains focused on optimizing Al algorithms
themselves, with limited attention to how computing infrastrucare can be adapted to accelerate
the development and training of Al models (Surianarayanan et al., 2023). Khan et al. (2022)
explore the importance of deep learning algorithms in industrial resource management but do not
address how computing infrastructure can support large-scale AI model training (Khan et al,,

2022).




Hybrid computing infrastructure offers a solution by enabling the development and training of Al
models using GPUs and TPUs to expedite the training process, while edge computing can be used
to handle real-time data inference. Utilizing GPUs in deep learning mode] training enables faster
parallel processing, while TPUs provide better acceleration capabilities "ar specialized tasks, such
as training machine leaming models with extensive datasets (Agomuo et al., 2024). Javaid et al.
(2022) demonstrate that the use of GPUs and TPUs can accelerate ATl model training several times
over compared to traditional CPU usage. However, challenges remain in effectively distributing
workloads between local and cloud computing to achieve optimal performance (Javaid et al,,

2022).

This study aims to address these challenges by investigating how hybrid computing architecture
can be adapted to support faster and more efficient Al development cycles. Additionally, it will
explore workload scheduling algorithms capable of distributing tasks among CPUs, GPUs, and
TPUs based on changing computational needs. By maximizing the use of hybrid computing
infrastructure, AI model development is expected to proceed more quickly and efficiently,

enabling companies to stay competitive in a rapidly evolving market.
12
D. Cost and Energy Efficiency in the Implementation of Hybrid Computing Architecture

12

Beyond performance, cost and energy efficiency are key considerations in the implementation of
hybrid computing architecture on an industrial scale (Kaur & Aron, 2022). Many studies focus on
enhancing computational performance, but few discuss the cost and sustainability impacts of
using specialized hardware such as GPUs and FPGAs (Katal et al., 2023). Saiteja & Ashok (2022)
indicate that GPU usage can improve computational performance but does not address operational
cost implications, particularly concerning high power consumption and cooling requirements.
Cost-effective and energy-efficient computing infrastructure is critical in industries often

pressured to reduce environmental impact and operational costs (Saiteja & Ashok, 2022).

This resﬁch contributes by exploring how hybrid computing architecture can maximize energy
and cost efficiency through the use of energy-efficignt cloud computing and specialized hardware
designed to reduce power consumption (Memari et al., 2022). Rodrigues Moreira et al. (2023)
suggest that virtualization technology can help companies utilize their computing resources more
efficiently without sacrificing performance. More efficient cooling solutions and energy-saving
hardware designs should also be considered to mitigate the environmental impact of large-scale
computing infrastructure deployment (Rodrigues Moreira et al., 2023). Furthermore, this study
will examine how a hybrid cloud strategy, combining public cloud usage for fluctuating

workloads with private cloud usage for sensitive data, can reduce operational costs. This approach
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not only offers flexibility in resource utilization but also ensures that companies can optimize
their computing efficiency without significant investment in physical infrastructure (Saleem et

al., 2023).
E. Challenges in Synchronization and Workload Management

Another challenge that has not been fully addressed in the literature on hybrid computing
architegture is the synchronization between components and efficient workload management
(Ullah et al., 2023). Mithas et al. (2022) note that one of the primary barriers to implementing AT
and big data technologies in industry is the dynamic distribution of workloads among CPUs,
GPUs, FPGAs, and other computing components (Mithas et al., 2022). Althmﬁ intelligent
workload scheduling has been proposed as a solution, many of these algorithms are still in the
early stages of development and have yet to be widely tested in real industrial environments (Rana
et al,, 2024). This study seeks to address this gap by developing and testing more intelligent and
dynamic workload scheduling algorithms capable of adjusting computational loads based on task
characterisﬁ and resource availability. Additionally, this study will explore how priority-based
scheduling can enhance the efficiency and performance of hybrid computing systems in managing
continuously changing workloads.

M. RESEARCH METHOD

This study employs a quantitative approach to explore the influence of hybrid caputing
architecture on the development and optimization of AI models on an industrial scale. The main
focus of this research is on the integration of CPUs, GPUs, and FPGAs, as well as cloud and edge
computing, to efficiently process big data and enhance Al model performance. The steps of the

research, from dataset selection to AI model performance evaluation, are detailed as follows.

The study uses an industrial dataset consisting of real-time IoT sensor data, production logs, and
industry transaction data. The dataset encompasses over 1 terabyte of data fmrﬁhe manufacturing
and healthcare sectors, collected over a two-year period. This dataset reﬂectﬁhe complexity and
volume of data encountered in industrial scenarios, including structured, semi-structured, and
unstructured data. The initial step in this process is data preprocessing, which involves cleaning
data to address missing values or outliers, normalizing features to ensure data scale uniformity,
and extracting keH‘eatures that will be used in AI model training. Following preprocessing, the

dataset is divided into two parts: 80% for model training and 20% for testing.

This study utilizes a hybrid computing architecture that combines CPUs, GPUs, FPGAs, and
cloud and edge computing services. The CPU is employed to manage general logic and control

tasks. The GPU is used to accelerate parallel processing, particularly in deep leaming model




training and big data processing. The FPGA serves as an accelerator for specific computational
tasks requiring customization, such as digital signal processing and real-time Al model inference.
Cloud computing provides the necessary computational scalability to handle increased workloads,
while edge computing is utilized to process data locally near its source, such as from [oT sensors,

reducing latency and enhancing responsiveness in industrial applications.

This computing system is configured using a dynamic workload scheduling algorithm that
efficiently distributes tasks between the CPU, GPU, FPGA, cloud, and edge computing. This
algorithm ensures that tasks requiring intensive processing are allocated to the GPU or cloud,
while tasks with low-latency requirements are assigned to edge computing or the FPGA. This

strategy helps optimize computing resource utilization and enhances overall system performance.
The development of Al models in this study fo]ﬁ's the Machine Learning Development Cycle

(MLDC). The algorithms used in this research inclu(BCDnvolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN), optimized for real-time data processing from IoT sensors
and industrial data. CNN is employed for processing visual data, while RNN is used for sequential
data analysis, such as predicting machine failures. The Al models are trained using GPU and TPU
hosted in the cloud. Hyperparameter tuning ia:onducted to optimize model performance, utilizing
grid search to identify the best parameters, such as learning rate, batch size, and the number of

layers in the network.

Model evaluation is performed using several performance metrics, including Mean Squﬁd Error
(MSE), Root Mean Squared Error (RMSE), and R-squared (R?). MSE measures the difference
between predicted and actual values, RMSE normalizes MSE for easier interpretation, and R2
assesses the extent to which vari%ity in the data is explained by the model. Additionally, this
study evaluates processing time, energy consumption, and computational costs associated with
the use of hybrid computing architecture, ensuring that the model is not only accurate but also

cost- and energy-efficient.

System testing is conducted across various industrial scenarios to evaluate performance in
handling dynamic workloads. The first scenario involves testing under light workloads with
normal production data, focusing on predictive analysis and real-time Al inference. The second
scenario tests the system during workload surges, where cloud computing is utilized to expand
processing capacity. The third scenario focuses on applications requiring real-time response with
low latency, where edge computing and FPGA are employed to accelerate local data processing.
The results from these tests are compared with traditional computing approaches using a single
CPU or GPU to assess the advantages of hybrid computing architecture in terms of performance

and efficiency.
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The software used for Al model training and evaluation includes TensorFlow and PyTorch, while
Apache Hadoop is usﬁ to manage and analyze big data. Additionally, statistical analysis is
performed to measure the significance of performance differences between the tested methods,
including tlﬁlse of t-tests and ANOVA to ensure that the results obtained are statistically
significant. Ten-fold cross-validation is applied to ensure the validity of the results, reduce bias,
and ensure more robust outcomes. This study also explores the cost and energy efficiency of
%Jrid computing architecture implementation. The combination of energy-efticient cloud usage
and specialized hardware such as GPUs and TPUs demonstrates potential cost savings and
reduced energy consumption. This analysis compares operational costs between cloud computing
and local physical infrastructure, as well as the potential for virtualization strategies to improve

computing resource efficiency without compromising performance.

IV. RESULT

A. Performance Results of Hybrid Computing Architecture

This study evaluates the performance of hybrid computing architecture in processing big data and
developing Al models for industrial applications. Experimental results indicate that hybrid
computing architecture enhances data processing efficiency and accelerates Al model training
times compared to single-computing systems that utilize only CPUs or GPUs. Table 1 shows the
comparative processing times between CPU, GPU, and hybrid computing architecture systems
under big data processing scenarios in the industry.

Table 1. Comparative Processing Times for CPU, GPU, and Hybrid Computing
Architecture in Industrial Big Data Processing Scenarios

. . Ener,
Computing System Processing Time | Model :;ccuracy Consumgpst{ion
(ms) (%) (kWh)

CPU 3400 82.5 1.2
GPU 1200 85.8 35
FPGA 950 84.1 1.0
Hybrid Computing (CPU+GPU) 650 88.3 2.1
Hybrid Computing (CPU+FPGA) 520 87.5 1.3

Table | demonstrates that the hybrid computing architecture combining CPU and GPU can
process data significantly faster (650 ms) compared to the CPU-only system (3400 ms) or the
GPU-only system (1200 ms). This result indicates a substantial improvement in processing time
etficiency, especially in industrial big data processing scenarios. Additionally, the hybrid system
achieved higher model accuracy (88.3%) compared to standalone CPU or GPU systems. In terms
of energy consumption, the hybrid architecture incorporating FPGA is more energy-efficient (1.3
kWh) compared to GPU (3.5 kWh), indicating that the CPU and FPGA combination is more

energy-efficient, although with a slight reduction in accuracy compared to GPU.




B. Al Model Performance Evaluation

The performance of the developed Al model was also evaluated using metrics such as MSE,
RMSE, and R? to measure the model’s predictive accuracy on industrial data. The results of the

Al model performance evaluation are presented in the following Table 2.

Table 2. AI Model Performance Metrics across Different Computing Systems

Model MSE RMSE R2
CPU 0.0352 0.1876 0.82
GPU 0.0275 0.1658 0.89
FPGA 0.0301 0.1735 0.87
Hybrid Computing |  0.0248 0.1575 0.91

C. Performance Comparison Visualization

To clarity the comparative performance results across computing systems, Figure 1 illustrates the
comparison of processing time, model accuracy, and energy consumption between CPU, GPU,

FPGA, and hybrid computing architecture systems.:
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Figure 1. Comparison of Processing Time, Model Accuracy, and Energy Consumption
Across Various Computing Systems

is chart illustrates that the hybrid computing architecture combining CPU and GPU delivers
the best performance in terms of processing time and accuracy, albeit with a slight increase in
energy consumption compared to FPGA. This visualization supports the claim that hybrid
computing architecture provides a more optimal solution for large-scale AI model development

in the industrial sector, particularly in scenarios requiring high speed and accuracy.

V.  DISCUSSION
Based on the results displayed in Tables | and 2, the hybrid computing architecture proves to be
superior in terms of processing time and Al model accuracy. The combination of CPU and GPU

can reduce processing time by up to 8081% faster compared to a single CPU, which is critical in




industrial scenarios requiring real-time data processing. This aligns with research by (Jiang et al.,
2023), which shows that while GPU excels in parallel processing, using hybrid architecture
demonstrates further performance improvements through synchronization with the CPU. The
significant increase in Al model accuracy (88.3%) with the CPU and GPU combination indicates
that workload distribution across hardware enhances data processing efficiency, especially for
deep learning models like CNN and RNN used in this research. This faster and more accurate
model provides a competitive advantage in industrial applications, such as equipment failure

prediction or supply chain optimization, where rapid and precise decisions are essential.

On the other hand, the hybrid architecture combining CPU and FPGA demonstrates advantages
in terms of energy consumption. Although its accuracy is slightly lower than that of the CPU and
GPU combination, this system is considerably more energy-efficient, consuming only 1.3 kWh
compared to 3.5 kWh on a single GPU. This suggests that the CPU and FPGA combination is
more suitable for industrial applications focused on energy savings, especially in environments
processing large volumes of data continuously, such as IoT-based monitoring systems (Solanki et
al., 2022). In terms of model evaluation, the research results indicate that the hybrid computing
system achieves lower MSE and RMSE values, along with higher R? values, suggesting that
models tained using this architecture are more accurate in predicting outputs. These findings
confirm the study by (Kristian et al., 2024), which emphasizes the importance of distributed

computing architecture in enhancing AI model performance.

Nevertheless, there are challenges associated with implementing hybrid computing architecture.
One of these is the complexity of workload scheduling across hardware components, which
requires precise synchronization to ensure each component functions optimally. Without effective
workload scheduling, the CPU, GPU, or FPGA could become underutilized or overburdened,
potentially reducing overall efficiency. This study also highlights that the initial cost of
implementing hybrid architecture, particularly for FPGA hardware, could be high for companies

with limited budgets; however, the long-term energy savings may offset the initial investment.

The practical implications of this research are considerable. In industrial scenarios, adopting a
hybrid computing architecture can offer significant operational advantages. Using edge
computing within a hybrid architecture, as tested in this study. enables companies to reduce
latency in real-time data processing. which is critical in applications like machine condition
monitoring and equipment failure prediction. Thus, this architecture not only provides efficiency

in terms of time and energy but also enhances decision-making speed in real-time applications.

In conclusion, hybrid computing architecture offers an efficient and flexible solution to meet high-

performance demands in large-scale Al model development. The findings of this research
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demonstrate that hybrid architecture can significantly improve speed, accuracy, and energy
efficiency, making it an advantageous choice for various industrial applications. Furthermore, this
research opens opportunities for further exploration into workload scheduling optimization and

cost-saving strategies to maximize the potential of hybrid computing architecture in the future.

VI. CONCLUSION AND RECOMMENDATION

A. Conclusion

This study has demonstrated the significant benefits of applying big data-based hybrid computing
architecture to optimize Al model performance in industrial applications. By integrating various
computing technologies such as CPU, GPU, and FPGA, along with edge computing and cloud,
this research successfully enhances processing efficiency, model accuracy, and energy
consumption. The results indicate that the hybrid architecture, especially the combination of CPU
and GPU, offers higher processing speeds and improved accuracy, while the CPU and FPGA
combination is more energy-efficient. These findings provide clear evidence that hybrid
computing solutions are highly effective in managing the increasing complexity and volume of
industrial data. Additionally, this research underscores the importance of dynamic workload
scheduling strategies to ensure synchronization and optimal performance among various
hardware components. This optimization is essential for accelerating Al model development
cycles and enhancing real-time data processing capabilities in industrial environments. Overall,
the findings affirm that hybrid computing architecture can make substantial contributions to
improving operational efficiency, cost savings, and sustainability in industries reliant on Al and

big data.
B. Recommendation

Based on the advantages identified in this study, industries should consider adopting hybrid
computing architecture to leverage superior performance and energy efficiency. For organizations
facing large-scale, real-time data processing needs, a combination of CPU, GPU, and FPGA,
along with cloud and edge computing, is recommended to optimize speed while reducing energy
consumption. Moreover, investment in dynamic workload scheduling systems will be critical to
ensure all computing resources are used efficiently, especially in industrial environments with
fluctuating workloads. Future research should focus on developing improved workload
scheduling algorithms and further examining the cost-benefit balance of imp]emen'ﬁg hybrid
architecture, particularly in industries sensitive to energy consumption. The potential integration
of Al-based systems for real-time monitoring and resource management could also be an area for
further exploration, enhancing the adaptability and efficiency of hybrid computing architecture

across various industrial applications.
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