Enhancing AI Model Accuracy and Scalability Through Big Data and Cloud Computing

Authors

  • Haris Jamaludin Univeristas Universitas Sains dan Teknologi Komputer Semarang
  • Unang Achlison Universitas Sains dan Teknologi Komputer: Semarang, ID
  • Nur Rokhman Universitas Sains dan Teknologi Komputer Semarang

DOI:

https://doi.org/10.51903/jtie.v3i3.203

Keywords:

Cloud Computing, artificial Intelligence, Big data, AI model optimization

Abstract

Data's exponential growth and cloud computing advancements have significantly impacted artificial intelligence (AI) model development. This study investigates how big data techniques integrated with cloud computing enhance the scalability and accuracy of AI models across sectors such as healthcare, business, and cybersecurity. Adopting a qualitative methodology, the research examines secondary data from 2020–2024, including case studies and literature. Key findings reveal that cloud computing enables large-scale data processing with significant efficiency, achieving average speeds of 20–45 seconds for datasets ranging from 50–120 TB/day. AI model accuracy also improved across sectors, increasing by 20% on average—reaching 92% in cybersecurity, 90% in healthcare, and 85% in business applications. The study identifies deep learning algorithms as pivotal for leveraging cloud computing's flexibility, allowing for advanced data analysis and real-time insights. However, challenges in data security and privacy remain critical concerns. This research contributes by highlighting the transformative role of cloud computing in big data management and AI optimization, offering practical insights into enhancing predictive capabilities while addressing operational cost efficiency through scalable infrastructure. The findings emphasize the necessity of robust security protocols to mitigate risks and ensure sustainable AI applications. Future research should explore sector-specific implementations to refine and expand the practical utility of these integrated technologies.

References

Abdulsalam, Y. S., & Hedabou, M. (2021). Security and Privacy in Cloud Computing: Technical Review. Future Internet, 14(1), 11. https://doi.org/10.3390/fi14010011

Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. Journal of Industrial Information Integration, 18, 100129. https://doi.org/10.1016/j.jii.2020.100129

Acs, B., Rantalainen, M., & Hartman, J. (2020). Artificial Intelligence as the Next Step Towards Precision Pathology. Journal of Internal Medicine, 288(1), 62–81. https://doi.org/10.1111/joim.13030

Alashhab, Z. R., Anbar, M., Singh, M. M., Leau, Y. B., Al-Sai, Z. A., & Alhayja’a, S. A. (2021). Impact of Coronavirus Pandemic Crisis on Technologies and Cloud Computing Applications. Journal of Electronic Science and Technology, 19(1), 25–40. https://doi.org/10.1016/j.jnlest.2020.100059

Alrumiah, S. S., & Hadwan, M. (2021). Implementing Big Data Analytics in E-Commerce: Vendor and Customer View. IEEE Access, 9, 37281–37286. https://doi.org/10.1109/access.2021.3063615

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/jstars.2020.3021052

Anupama, K. C., Shivakumar, B. R., & Nagaraja, R. (2021). Resource Utilization Prediction in Cloud Computing Using Hybrid Model. International Journal of Advanced Computer Science and Applications, 12(4), 373–381. https://doi.org/10.14569/ijacsa.2021.0120447

Bazzaz Abkenar, S., Haghi Kashani, M., Mahdipour, E., & Jameii, S. M. (2021). Big Data Analytics Meets Social Media: A Systematic Review of Techniques, Open Issues, and Future Directions. Telematics and Informatics, 57, 101517. https://doi.org/10.1016/j.tele.2020.101517

Boyapati, S., Swarna, S. R., Dutt, V., & Vyas, N. (2020). Big Data Approach for Medical Data Classification: A Review Study. Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 762–766. https://doi.org/10.1109/iciss49785.2020.9315870

Chauhan, D., Bahad, P., & Jain, J. K. (2024). Sustainable AI Environmental Implications, Challenges, and Opportunities. Explainable AI (XAI) for Sustainable Development: Trends and Applications, 1–15. https://doi.org/10.1201/9781003457176-1

Chen, Y. (2020). IoT, Cloud, Big Data and AI in Interdisciplinary Domains. Simulation Modelling Practice and Theory, 102, 102070. https://doi.org/10.1016/j.simpat.2020.102070

Dlamini, Z., Francies, F. Z., Hull, R., & Marima, R. (2020). Artificial Intelligence (AI) and Big Data in Cancer and Precision Oncology. Computational and Structural Biotechnology Journal, 18, 2300–2311. https://doi.org/10.1016/j.csbj.2020.08.019

Favaretto, M., de Clercq, E., Schneble, C. O., & Elger, B. S. (2020). What Is Your Definition of Big Data? Researchers’ Understanding of the Phenomenon of the Decade. Plos One, 15(2), 0228987. https://doi.org/10.1371/journal.pone.0228987

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang, M. (2021). COSTE: Complexity-Based OverSampling Technique to Alleviate the Class Imbalance Problem in Software Defect Prediction. Information and Software Technology, 129, 106432. https://doi.org/10.1016/j.infsof.2020.106432

Haakman, M., Cruz, L., Huijgens, H., & van Deursen, A. (2021). Ai Lifecycle Models Need to be Revised. Empirical Software Engineering, 26(5), 95. https://doi.org/10.1007/s10664-021-09993-1

Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial Intelligence (AI) Applications for Marketing: A Literature-Based Study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/j.ijin.2022.08.005

Iqbal, R., Doctor, F., More, B., Mahmud, S., & Yousuf, U. (2020). Big Data Analytics: Computational Intelligence Techniques and Application Areas. Technological Forecasting and Social Change, 153, 119253. https://doi.org/10.1016/j.techfore.2018.03.024

Jagatheesaperumal, S. K., Rahouti, M., Ahmad, K., Al-Fuqaha, A., & Guizani, M. (2022). The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions. IEEE Internet of Things Journal, 9(15), 12861–12885. https://doi.org/10.1109/jiot.2021.3139827

Kadhim, Z. S., Abdullah, H. S., & Ghathwan, K. I. (2022). Artificial Neural Network Hyperparameters Optimization: A Survey. International Journal of Online and Biomedical Engineering, 18(15), 59. https://doi.org/10.3991/ijoe.v18i15.34399

Liang, W., Tadesse, G. A., Ho, D., Li, F. F., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, Challenges and Opportunities in Creating Data for Trustworthy AI. Nature Machine Intelligence, 4(8), 669–677. https://doi.org/10.1038/s42256-022-00516-1

Lu, Y., Phillips, G. M., & Yang, J. (2023). The Impact of Cloud Computing and AI on Industry Dynamics and Competition. SSRN Electronic Journal, 30(7), 797–804. https://doi.org/10.2139/ssrn.4480570

Lv, Z., & Qiao, L. (2020). Analysis of Healthcare Big Data. Future Generation Computer Systems, 109, 103–110. https://doi.org/10.1016/j.future.2020.03.039

Naeem, M., Jamal, T., Diaz-Martinez, J., Butt, S. A., Montesano, N., Tariq, M. I., De-la-Hoz-Franco, E., & De-La-Hoz-Valdiris, E. (2022). Trends and Future Perspective Challenges in Big Data. Smart Innovation, Systems and Technologies, 253, 309–325. https://doi.org/10.1007/978-981-16-5036-9_30

Roumeliotis, K. I., & Tselikas, N. D. (2023). ChatGPT and Open-AI Models: A Preliminary Review. Future Internet, 15(6), 192. https://doi.org/10.3390/fi15060192

Sandhu, A. K. (2022). Big Data with Cloud Computing: Discussions and Challenges. Big Data Mining and Analytics, 5(1), 32–40. https://doi.org/10.26599/bdma.2021.9020016

Santoso, J. T., Wibowo, A., & Raharjo, B. (2024). Enhancement of Internal Business Process Using Artificial Intelligence. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 13(3). https://doi.org/10.23887/janapati.v13i3.79242

Seifian, A., Bahrami, M., Shokouhyar, S., & Shokoohyar, S. (2023). Data-Based Drivers of Big Data Analytics Utilization: Moderating Role of IT Proactive Climate. Benchmarking, 30(10), 4461–4486. https://doi.org/10.1108/bij-11-2021-0670

Sjödin, D., Parida, V., Palmié, M., & Wincent, J. (2021). How AI Capabilities Enable Business Model Innovation: Scaling AI Through Co-Evolutionary Processes and Feedback Loops. Journal of Business Research, 134, 574–587. https://doi.org/10.1016/j.jbusres.2021.05.009

Strohm, L., Hehakaya, C., Ranschaert, E. R., Boon, W. P. C., & Moors, E. H. M. (2020). Implementation of Artificial Intelligence (AI) Applications in Radiology: Hindering and Facilitating Factors. European Radiology, 30(10), 5525–5532. https://doi.org/10.1007/s00330-020-06946-y

Tao, D., Yang, P., & Feng, H. (2020). Utilization of Text Mining as a Big Data Analysis Tool for Food Science and Nutrition. Comprehensive Reviews in Food Science and Food Safety, 19(2), 875–894. https://doi.org/10.1111/1541-4337.12540

Yanamala, A. K. Y. (2024). Optimizing Data Storage in Cloud Computing: Techniques and Best Practices. International Journal of Advanced Engineering Technologies and Innovations, 1(3), 476–513.

Zhang, Y., Vera Liao, Q., & Bellamy, R. K. E. (2020). Efect of Confidence and Explanation on Accuracy and Trust Calibration In AI-Assisted Decision Making. FAT* 2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 295–305. https://doi.org/10.1145/3351095.3372852

Published

2024-12-24

How to Cite

Enhancing AI Model Accuracy and Scalability Through Big Data and Cloud Computing. (2024). Journal of Technology Informatics and Engineering, 3(3), 296-307. https://doi.org/10.51903/jtie.v3i3.203