Enhancing Big Data Processing Efficiency in AI-Based Healthcare Systems: A Comparative Analysis of Random Forest and Deep

Authors

  • Priyadi Priyadi Universitas Sains dan Teknologi Komputer
  • Migunani Migunani Universitas Sains dan Teknologi Komputer
  • Dani Sasmoko Universitas Sains dan Teknologi Komputer

DOI:

https://doi.org/10.51903/jtie.v3i3.205

Keywords:

Big data, Artificial Intelligence, Deep Learning, Healthcare Data Processing, Cloud Computing

Abstract

This research focuses on optimizing the speed of Big Data processing using Artificial Intelligence (AI) in healthcare applications. The study integrates Random Forest (RF) and Deep Learning (DL) algorithms with cloud-based computing systems to improve data processing efficiency. The dataset includes both structured data, such as Electronic Health Records (EHR), and unstructured data, like medical images. The results show that RF performs better with structured data, achieving a lower Mean Squared Error (MSE) and higher R-squared (R²) than traditional methods. Meanwhile, DL achieves superior accuracy and Area Under the Curve (AUC) in processing unstructured data. By utilizing the distributed computing power of Spark on a cloud platform, the processing speed was significantly enhanced, as demonstrated by a statistically significant reduction in processing time (p < 0.05) observed through a t-test analysis comparing Spark-based computing with traditional methods. Despite these improvements, challenges such as data privacy and infrastructure costs remain. Despite these improvements, challenges such as data privacy and infrastructure costs remain. This research provides a robust framework for real-time healthcare data analysis, highlighting its potential to improve decision-making processes and patient outcomes in medical services.

References

Abatal, A., Mzili, M., Mzili, T., Cherrat, K., Yassine, A., & Abualigah, L. (2024). Intelligent Interconnected Healthcare System: Integrating IoT and Big Data for Personalized Patient Care. International Journal of Online and Biomedical Engineering, 20(11), 46–65. https://doi.org/10.3991/ijoe.v20i11.49893

Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Applied Sciences (Switzerland), 13(12), 7082. https://doi.org/10.3390/app13127082

Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A Systematic Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities. Journal of Innovation and Knowledge, 8(1), 100333. https://doi.org/10.1016/j.jik.2023.100333

Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Medical Education, 23(1), 1–15. https://doi.org/10.1186/s12909-023-04698-z

Bharadiya, J. P. (2023). A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data Analytics. American Journal of Artificial Intelligence, 7(1), 24. https://doi.org/10.11648/j.ajai.20230701.14

Carvalho, G., Cabral, B., Pereira, V., & Bernardino, J. (2021). Edge Computing: Current Trends, Research Challenges and Future Directions. Computing, 103(5), 993–1023. https://doi.org/10.1007/s00607-020-00896-5

Deepa, N., Pham, Q. V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., Maddikunta, P. K. R., Fang, F., & Pathirana, P. N. (2022). A Survey on Blockchain for Big Data: Approaches, Opportunities, and Future Directions. Future Generation Computer Systems, 131, 209–226. https://doi.org/10.1016/j.future.2022.01.017

Fu, J., Zhang, Y., Wang, Y., Zhang, H., Liu, J., Tang, J., Yang, Q., Sun, H., Qiu, W., Ma, Y., Li, Z., Zheng, M., & Zhu, F. (2022). Optimization of Metabolomic Data Processing Using NOREVA. Nature Protocols, 17(1), 129–151. https://doi.org/10.1038/s41596-021-00636-9

Gates, J. D., Yulianti, Y., & Pangilinan, G. A. (2024). Big Data Analytics for Predictive Insights in Healthcare. International Transactions on Artificial Intelligence (ITALIC), 3(1), 54–63. https://doi.org/10.33050/italic.v3i1.622

Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2023). AI-Big Data Analytics for Building Automation and Management Systems: A Survey, Actual Challenges and Future Perspectives. Artificial Intelligence Review, 56(6), 4929–5021. https://doi.org/10.1007/s10462-022-10286-2

Jagadeeswari, V., Subramaniyaswamy, V., Logesh, R., & Vijayakumar, V. (2018). A study on medical Internet of Things and Big Data in personalized healthcare system. Health Information Science and Systems, 6(1), 14. https://doi.org/10.1007/s13755-018-0049-x

Jiang, P., Sinha, S., Aldape, K., Hannenhalli, S., Sahinalp, C., & Ruppin, E. (2022). Big Data in Basic and Translational Cancer Research. Nature Reviews Cancer, 22(11), 625–639. https://doi.org/10.1038/s41568-022-00502-0

Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big Data for Healthcare Industry 4.0: Applications, Challenges and Future Perspectives. Expert Systems with Applications, 200, 116912. https://doi.org/10.1016/j.eswa.2022.116912

Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy Efficiency in Cloud Computing Data Centers: A Survey on Software Technologies. Cluster Computing, 26(3), 1845–1875. https://doi.org/10.1007/s10586-022-03713-0

Li, C., Chen, Y., & Shang, Y. (2022). A Review of Industrial Big Data for Decision Making in Intelligent Manufacturing. Engineering Science and Technology, an International Journal, 29, 101021. https://doi.org/10.1016/j.jestch.2021.06.001

Ma, L., Zhang, Y., & García-Díaz, V. (2023). Design and Implementation of a Fast Integration Method for Multi-Source Data in High-Speed Network. Journal of High Speed Networks, 29(3), 251–263. https://doi.org/10.3233/jhs-222047

Naeem, M., Jamal, T., Diaz-Martinez, J., Butt, S. A., Montesano, N., Tariq, M. I., De-la-Hoz-Franco, E., & De-La-Hoz-Valdiris, E. (2022). Trends and Future Perspective Challenges in Big Data. Smart Innovation, Systems and Technologies, 253, 309–325. https://doi.org/10.1007/978-981-16-5036-9_30

Nti, I. K., Quarcoo, J. A., Aning, J., & Fosu, G. K. (2022). A Mini-Review of Machine Learning in Big Data Analytics: Applications, Challenges, and Prospects. Big Data Mining and Analytics, 5(2), 81–97. https://doi.org/10.26599/bdma.2021.9020028

Olaniyi, O. O., Okunleye, O. J., & Olabanji, S. O. (2023). Advancing Data-Driven Decision-Making in Smart Cities through Big Data Analytics: A Comprehensive Review of Existing Literature. Current Journal of Applied Science and Technology, 42(25), 10–18. https://doi.org/10.9734/cjast/2023/v42i254181

Poalelungi, D. G., Musat, C. L., Fulga, A., Neagu, M., Neagu, A. I., Piraianu, A. I., & Fulga, I. (2023). Advancing Patient Care: How Artificial Intelligence is Transforming Healthcare. Journal of Personalized Medicine, 13(8), 1214. https://doi.org/10.3390/jpm13081214

Pyzer-Knapp, E. O., Pitera, J. W., Staar, P. W. J., Takeda, S., Laino, T., Sanders, D. P., Sexton, J., Smith, J. R., & Curioni, A. (2022). Accelerating Materials Discovery Using Artificial Intelligence, High Performance Computing and Robotics. Npj Computational Materials, 8(1), 84. https://doi.org/10.1038/s41524-022-00765-z

Rehman, A., Naz, S., & Razzak, I. (2022). Leveraging Big Data Analytics in Healthcare Enhancement: Trends, Challenges and Opportunities. Multimedia Systems, 28(4), 1339–1371. https://doi.org/10.1007/s00530-020-00736-8

Santoso, J. T., Raharjo, B., & Wibowo, A. (2023). Combination of Alphanumeric Password and Graphic Authentication for Cyber Security. Journal of Internet Services and Information Security, 14(1), 16–36. https://doi.org/10.58346/JISIS.2024.I1.002

Sen, S., Agarwal, S., Chakraborty, P., & Singh, K. P. (2022). Astronomical Big Data Processing Using Machine Learning: A Comprehensive Review. Experimental Astronomy, 53(1), 1–43. https://doi.org/10.1007/s10686-021-09827-4

Shirke, S. A., Jayakumar, N., & Patil, S. (2024). Design and Performance Analysis of Modern Computational Storage Devices: A Systematic Review. Expert Systems with Applications, 250, 123570. https://doi.org/10.1016/j.eswa.2024.123570

Singh, R. K., Agrawal, S., Sahu, A., & Kazancoglu, Y. (2023). Strategic Issues of Big Data Analytics Applications for Managing Health-Care Sector: A Systematic Literature Review and Future Research Agenda. TQM Journal, 35(1), 262–291. https://doi.org/10.1108/tqm-02-2021-0051

Wang, H., Li, Y., Xiong, M., & Chen, H. (2023). A Combined Wind Speed Prediction Model Based on Data Processing, Multi-Objective Optimization and Machine Learning. Energy Reports, 9, 413–421. https://doi.org/10.1016/j.egyr.2023.04.326

Weinert, L., Müller, J., Svensson, L., & Heinze, O. (2022). Perspective of Information Technology Decision Makers on Factors Influencing Adoption and Implementation of Artificial Intelligence Technologies in 40 German Hospitals: Descriptive Analysis. JMIR Medical Informatics, 10(6), 34678. https://doi.org/10.2196/34678

Yaqoob, I., Salah, K., Jayaraman, R., & Al-Hammadi, Y. (2022). Blockchain for Healthcare Data Management: Opportunities, Challenges, and Future Recommendations. Neural Computing and Applications, 34(14), 11475–11490. https://doi.org/10.1007/s00521-020-05519-w

Published

2024-12-20

How to Cite

Enhancing Big Data Processing Efficiency in AI-Based Healthcare Systems: A Comparative Analysis of Random Forest and Deep. (2024). Journal of Technology Informatics and Engineering, 3(3), 263-278. https://doi.org/10.51903/jtie.v3i3.205