AI-Driven Adaptive Radar Systems for Real-Time Target Tracking in Urban Environments

Authors

  • Muhammad Jamal Udin Ghofur Sekolah Tinggi Manajemen Informatika Dan Komputer (STMIK) HIMSYA, Kota Semarang, Indonesia
  • Eko Riyanto Sekolah Tinggi Manajemen Informatika Dan Komputer (STMIK) HIMSYA, Kota Semarang, Indonesia

DOI:

https://doi.org/10.51903/jtie.v4i1.289

Keywords:

Adaptive Radar, Artificial Intelligence, Target Tracking, Urban Environment, Signal Processing

Abstract

Radar systems play a crucial role in target tracking within urban environments, where challenges such as clutter, multipath effects, and electromagnetic interference significantly impact detection accuracy. Traditional radar methods often struggle to adapt to dynamic urban conditions, leading to decreased reliability in real-time target tracking. This study aims to develop and evaluate an AI-driven adaptive radar system that enhances tracking accuracy in urban settings. The research employs a quantitative approach using simulations to model radar signal processing under various environmental conditions. The AI model, based on Convolutional Neural Networks (CNN), is trained to optimize radar performance by filtering out noise and dynamically adjusting detection parameters. The results indicate that the AI-based radar system achieves a tracking accuracy of 95.2%, significantly outperforming traditional radar systems, which only reach 80% accuracy. Additionally, the AI-enhanced radar reduces response time to 120 milliseconds, compared to 250 milliseconds in conventional systems, demonstrating improved real-time processing capabilities. The system also exhibits greater resilience to high-clutter environments, maintaining stable target detection despite signal interference. These findings highlight the potential of AI in enhancing radar functionality for applications such as surveillance, traffic monitoring, and security. Future research should focus on integrating AI-driven radar with real-world radar hardware, exploring multi-sensor fusion, and refining adaptive learning techniques to further optimize tracking performance in complex environments

References

Abdelfattah, T., Maher, A., Youssef, A., & Driessen, P. F. (2024). Seamless Optimization of Wavelet Parameters for Denoising LFM Radar Signals: An AI-Based Approach. Remote Sensing, 16(22), 4211. https://doi.org/10.3390/rs16224211

Arafat, M. Y., Alam, M. M., & Moh, S. (2023). Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and Challenges. Drones, 7(2), 89. https://doi.org/10.3390/drones7020089

Cai, L., Qian, H., Xing, L., Zou, Y., Qiu, L., Liu, Z., Tian, S., & Li, H. (2023). A Software-Defined Radar for Low-Altitude Slow-Moving Small Targets Detection Using Transmit Beam Control. Remote Sensing, 15(13), 3371. https://doi.org/10.3390/rs15133371

Cheng, P., Xiong, Z., Bao, Y., Zhuang, P., Zhang, Y., Blasch, E., & Chen, G. (2023). A Deep Learning-Enhanced Multi-Modal Sensing Platform for Robust Human Object Detection and Tracking in Challenging Environments. Electronics, 12(16), 3423. https://doi.org/10.3390/electronics12163423

Dasgupta, S., Irfan, M. S., Rahman, M., & Chowdhury, M. (2025). Detection and Mitigation of Spoofing Attacks in-Based Autonomous Ground Vehicle Navigation Systems. Data Analytics for Intelligent Transportation Systems, 15, 403–427. https://doi.org/10.1016/b978-0-443-13878-2.00016-3

Feng, W., Hu, X., & He, X. (2024). Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging. Electronics, 13(21), 4251. https://doi.org/10.3390/electronics13214251

Hashmi, U. S., Akbar, S., Adve, R., Moo, P. W., & Ding, J. (2023). Artificial Intelligence Meets Radar Resource Management: A Comprehensive Background and Literature Review. IET Radar, Sonar and Navigation, 17(2), 153–178. https://doi.org/10.1049/rsn2.12337

Huang, K., Ding, J., & Deng, W. (2024). An Overview of Millimeter-Wave Radar Modeling Methods for Autonomous Driving Simulation Applications. Sensors, 24(11), 3310. https://doi.org/10.3390/s24113310

Jiang, R., Xu, H., Gong, G., Kuang, Y., & Liu, Z. (2022). Spatial-Temporal Attentive LSTM for Vehicle-Trajectory Prediction. ISPRS International Journal of Geo-Information, 11(7), 354. https://doi.org/10.3390/ijgi11070354

Jiang, W., Ren, Y., Liu, Y., Gegov, A., Jafari, R., Morris, D., Jiang, W., Ren, Y., Liu, Y., & Leng, J. (2022). Artificial Neural Networks and Deep Learning Techniques Applied to Radar Target Detection: A Review. Electronics, 11(1), 156. https://doi.org/10.3390/electronics11010156

Jiang, W., Wang, Y., Li, Y., Lin, Y., & Shen, W. (2023). Radar Target Characterization and Deep Learning in Radar Automatic Target Recognition: A Review. Remote Sensing, 15(15), 3742. https://doi.org/10.3390/rs15153742

Kurtoğlu, E., Biswas, S., Gurbuz, A. C., & Gurbuz, S. Z. (2023). Boosting Multi-Target Recognition Performance With Multi-Input Multi-Output Radar-Based Angular Subspace Projection and Multi-View Deep Neural Network. IET Radar, Sonar and Navigation, 17(7), 1115–1128. https://doi.org/10.1049/rsn2.12405

Li, Z., Braun, T., Sun, D., Isaia, C., & Michaelides, M. P. (2023). A Review of Wireless Positioning Techniques and Technologies: From Smart Sensors to 6G. Signals, 4(1), 90–136. https://doi.org/10.3390/signals4010006a

Massimi, F., Ferrara, P., & Benedetto, F. (2023). Deep Learning Methods for Space Situational Awareness in Mega-Constellations Satellite-Based Internet of Things Networks. Sensors, 23(1), 124. https://doi.org/10.3390/s23010124

Mohanty, A., & Gao, G. (2024). A Survey of Machine Learning Techniques for Improving Global Navigation Satellite Systems. Eurasip Journal on Advances in Signal Processing, 2024(1), 73. https://doi.org/10.1186/s13634-024-01167-7

Pico, N., Montero, E., Vanegas, M., Erazo Ayon, J. M., Auh, E., Shin, J., Doh, M., Park, S. H., & Moon, H. (2024). Integrating Radar-Based Obstacle Detection with Deep Reinforcement Learning for Robust Autonomous Navigation. Applied Sciences, 15(1), 295. https://doi.org/10.3390/app15010295

Qiao, S., Fan, Y., Wang, G., Mu, D., & He, Z. (2022). Radar Target Tracking for Unmanned Surface Vehicle Based on Square Root Sage–Husa Adaptive Robust Kalman Filter. Sensors, 22(8), 2924. https://doi.org/10.3390/s22082924

Rosado-Sanz, J., Jarabo-Amores, M. P., De la Mata-Moya, D., & Rey-Maestre, N. (2022). Adaptive Beamforming Approaches to Improve Passive Radar Performance in Sea and Wind Farms’ Clutter. Sensors, 22(18), 6865. https://doi.org/10.3390/s22186865

Ruiz-Perez, F., López-Estrada, S. M., Tolentino-Hernández, R. V., & Caballero-Briones, F. (2022). Carbon-Based Radar Absorbing Materials: A Critical Review. Journal of Science: Advanced Materials and Devices, 7(3), 100454. https://doi.org/10.1016/j.jsamd.2022.100454

Sénica, A. L., Marques, P. A. C., & Figueiredo, M. A. T. (2024). Artificial Intelligence applications in Noise Radar Technology. IET Radar, Sonar and Navigation, 18(7), 986–1001. https://doi.org/10.1049/rsn2.12503

Sharma, A. ;, Sharma, V. ;, Jaiswal, M. ;, Wang, H.-C. ;, Jayakody, D. N. K. ;, Basnayaka, C. M. W. ;, Sharma, A., Sharma, V., Jaiswal, M., Wang, H.-C., Nalin, D., Jayakody, K., Wijerathna Basnayaka, C. M., & Muthanna, A. (2022). Recent Trends in AI-Based Intelligent Sensing. Electronics, 11(10), 1661. https://doi.org/10.3390/electronics11101661

Soumya, A., Krishna Mohan, C., & Cenkeramaddi, L. R. (2023). Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review. Sensors, 23(21), 8901. https://doi.org/10.3390/s23218901

Xu, X., Fan, W., Wang, S., & Zhou, F. (2024). WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar. Remote Sensing, 16(5), 910. https://doi.org/10.3390/rs16050910

Zhang, J., Dang, X., & Hao, Z. (2024). TWPT: Through-Wall Position Detection and Tracking System Using IR-UWB Radar Utilizing Kalman Filter-Based Clutter Reduction and CLEAN Algorithm. Electronics, 13(19), 3792. https://doi.org/10.3390/electronics13193792

Zhao, L., & Bai, Y. (2024). Unlocking the Ocean 6G: A Review of Path-Planning Techniques for Maritime Data Harvesting Assisted by Autonomous Marine Vehicles. Journal of Marine Science and Engineering, 12(1), 126. https://doi.org/10.3390/jmse12010126

Published

2025-04-21

How to Cite

AI-Driven Adaptive Radar Systems for Real-Time Target Tracking in Urban Environments. (2025). Journal of Technology Informatics and Engineering, 4(1). https://doi.org/10.51903/jtie.v4i1.289