Integrating Big Data and Edge Computing for Enhancing AI Efficiency in Real-Time Applications
DOI:
https://doi.org/10.51903/jtie.v3i3.204Keywords:
Edge Computing, Big Data Integration, AI Efficiency, Real-Time ProcessingAbstract
Integrating Big Data and Edge Computing is revolutionizing the efficiency of artificial intelligence (AI) systems, particularly in applications requiring real-time responses. This study explores the synergistic role of these technologies in two critical sectors: autonomous vehicles and healthcare. Using a case study approach, real-world datasets and simulation platforms were employed to evaluate improvements in latency, prediction accuracy, and system efficiency. Key findings reveal that Edge Computing reduces latency by 30%, with response times dropping from 150 ms to 105 ms in autonomous vehicles and from 200 ms to 140 ms in healthcare applications. Additionally, leveraging Big Data for AI training enhanced prediction accuracy by 15% for traffic pattern recognition and 12% for patient condition monitoring. Despite these advancements, challenges such as scalability, data security, and interoperability persist, necessitating robust infrastructure and end-to-end encryption solutions. This research highlights the transformative potential of combining Big Data and Edge Computing to optimize AI systems for real-time applications, offering insights into improving operational efficiency and predictive accuracy. The findings are expected to guide future developments in AI technologies, particularly in the context of expanding 5G networks and growing demand for real-time data processing.
References
Abdelmaboud, A., Ahmed, A. I. A., Abaker, M., Eisa, T. A. E., Albasheer, H., Ghorashi, S. A., & Karim, F. K. (2022). Blockchain for IoT Applications: Taxonomy, Platforms, Recent Advances, Challenges and Future Research Directions. Electronics, 11(4), 630. https://doi.org/10.3390/electronics11040630
Alahakoon, D., Nawaratne, R., Xu, Y., De Silva, D., Sivarajah, U., & Gupta, B. (2023). Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities. Information Systems Frontiers, 25(1), 221–240. https://doi.org/10.1007/s10796-020-10056-x
Albouq, S. S., Sen, A. A. A., Almashf, N., Yamin, M., Alshanqiti, A., & Bahbouh, N. M. (2022). A Survey of Interoperability Challenges and Solutions for Dealing With Them in IoT Environment. IEEE Access, 10, 36416–36428. https://doi.org/10.1109/access.2022.3162219
Awotunde, J. B., Oluwabukonla, S., Chakraborty, C., Bhoi, A. K., & Ajamu, G. J. (2022). Application of Artificial Intelligence and Big Data for Fighting COVID-19 Pandemic. International Series in Operations Research and Management Science, 320, 3–26. https://doi.org/10.1007/978-3-030-87019-5_1
Bajaj, K., Sharma, B., & Singh, R. (2022). Implementation Analysis of IoT-Based Offloading Frameworks on Cloud/Edge Computing for Sensor Generated Big Data. Complex and Intelligent Systems, 8(5), 3641–3658. https://doi.org/10.1007/s40747-021-00434-6
Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R. N., & Basheer, S. (2022). Autonomous Vehicles and Intelligent Automation: Applications, Challenges, and Opportunities. Mobile Information Systems, 2022(1), 7632892. https://doi.org/10.1155/2022/7632892
Berisha, B., Mëziu, E., & Shabani, I. (2022). Big Data Analytics in Cloud Computing: An Overview. Journal of Cloud Computing, 11(1), 24. https://doi.org/10.1186/s13677-022-00301-w
Biswas, A., & Wang, H. C. (2023). Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and Blockchain. Sensors, 23(4), 1963. https://doi.org/10.3390/s23041963
Blinova, E., Ponomarenko, T., & Knysh, V. (2022). Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability, 14(13), 8163. https://doi.org/10.3390/su14138163
Bourechak, A., Zedadra, O., Kouahla, M. N., Guerrieri, A., Seridi, H., & Fortino, G. (2023). At the Confluence of Artificial Intelligence and Edge Computing in IoT-Based Applications: A Review and New Perspectives. Sensors, 23(3), 1639. https://doi.org/10.3390/s23031639
Caiazza, C., Giordano, S., Luconi, V., & Vecchio, A. (2022). Edge Computing vs Centralized Cloud: Impact of Communication Latency on the Energy Consumption of LTE Terminal Nodes. Computer Communications, 194, 213–225. https://doi.org/10.1016/j.comcom.2022.07.026
Chahal, A., Gulia, P., & Gill, N. S. (2022). Different Analytical Frameworks and Bigdata Model for Internet of Things. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 1159–1166. https://doi.org/10.11591/ijeecs.v25.i2.pp1159-1166
Chavhan, S., Gupta, D., Gochhayat, S. P., Chandana, B. N., Khanna, A., Shankar, K., & Rodrigues, J. J. P. C. (2022). Edge Computing AI-IoT Integrated Energy-Efficient Intelligent Transportation System for Smart Cities. ACM Transactions on Internet Technology, 22(4), 1–18. https://doi.org/10.1145/3507906
Chiaradonna, S., Jevtić, P., & Lanchier, N. (2023). Framework for Cyber Risk Loss Distribution of Hospital Infrastructure: Bond Percolation on Mixed Random Graphs Approach. Risk Analysis, 43(12), 2450–2485. https://doi.org/10.1111/risa.14127
Farooq, D. M. (2023). Artificial Intelligence-Based Approach on Cybersecurity Challenges and Opportunities in The Internet of Things & Edge Computing Devices. International Journal of Engineering and Computer Science, 12(7), 25763–25768. https://doi.org/10.18535/ijecs/v12i07.4744
Fawzy, D., Moussa, S. M., & Badr, N. L. (2022). The Internet of Things and Architectures of Big Data Analytics: Challenges of Intersection at Different Domains. IEEE Access, 10, 4969–4992. https://doi.org/10.1109/access.2022.3140409
Fazeldehkordi, E., & Grønli, T. M. (2022). A Survey of Security Architectures for Edge Computing-Based IoT. Internet of Things, 3(3), 332–365. https://doi.org/10.3390/iot3030019
Hallioui, A., Herrou, B., Santos, R. S., Katina, P. F., & Egbue, O. (2022). Systems-Based Approach to Contemporary Business Management: An Enabler of Business Sustainability in a Context of Industry 4.0, Circular Economy, Competitiveness and Diverse Stakeholders. Journal of Cleaner Production, 373, 133819. https://doi.org/10.1016/j.jclepro.2022.133819
Hartmann, M., Hashmi, U. S., & Imran, A. (2022). Edge Computing in Smart Health Care Systems: Review, Challenges, and Research Directions. Transactions on Emerging Telecommunications Technologies, 33(3), 3710. https://doi.org/10.1002/ett.3710
Hazra, A., Kalita, A., & Gurusamy, M. (2024). Meeting the Requirements of Internet of Things: The Promise of Edge Computing. IEEE Internet of Things Journal, 11(5), 7474–7498. https://doi.org/10.1109/jiot.2023.3339492
Iftikhar, S., Gill, S. S., Song, C., Xu, M., Aslanpour, M. S., Toosi, A. N., Du, J., Wu, H., Ghosh, S., Chowdhury, D., Golec, M., Kumar, M., Abdelmoniem, A. M., Cuadrado, F., Varghese, B., Rana, O., Dustdar, S., & Uhlig, S. (2023). AI-Based Fog and Edge Computing: A Systematic Review, Taxonomy, and Future Directions. Internet of Things, 21, 100674. https://doi.org/10.1016/j.iot.2022.100674
Khan, J. I., Khan, J., Ali, F., Ullah, F., Bacha, J., & Lee, S. (2022). Artificial Intelligence and Internet of Things (AI-IoT) Technologies in Response to COVID-19 Pandemic: A Systematic Review. IEEE Access, 10, 62613–62660. https://doi.org/10.1109/access.2022.3181605
Kumar, R., Sangwan, K. S., Herrmann, C., & Thakur, S. (2023). Cyber-Physical Production System Framework for Online Monitoring, Visualization, and Control Using Cloud, Fog, and Edge Computing Technologies. International Journal of Computer Integrated Manufacturing, 36(10), 1507–1525. https://doi.org/10.1080/0951192x.2023.2189312
Li, J., Ye, Z., & Zhang, C. (2022). Study on the Interaction Between Big Data and Artificial Intelligence. Systems Research and Behavioral Science, 39(3), 641–648. https://doi.org/10.1002/sres.2878
McEnroe, P., Wang, S., & Liyanage, M. (2022). A Survey on the Convergence of Edge Computing and AI for UAVs: Opportunities and Challenges. IEEE Internet of Things Journal, 9(17), 15435–15459. https://doi.org/10.1109/jiot.2022.3176400
Milli, M., & Milli, M. (2023). Big Data and its Future. In Data Science with Semantic Technologies: New Trends and Future Developments. CRC Press. https://doi.org/10.1201/9781003310785-2
Ogbuke, N. J., Yusuf, Y. Y., Dharma, K., & Mercangoz, B. A. (2022). Big Data Supply Chain Analytics: Ethical, Privacy and Security Challenges Posed to Business, Industries and Society. Production Planning and Control, 33(2–3), 123–137. https://doi.org/10.1080/09537287.2020.1810764
Rajavel, R., Ravichandran, S. K., Harimoorthy, K., Nagappan, P., & Gobichettipalayam, K. R. (2022). IoT-Based Smart Healthcare Video Surveillance System Using Edge Computing. Journal of Ambient Intelligence and Humanized Computing, 13(6), 3195–3207. https://doi.org/10.1007/s12652-021-03157-1
Sandu, C., & Susnea, I. (2021). Edge Computing for Autonomous Vehicles-A Scoping Review. Proceedings - RoEduNet IEEE International Conference, 2021, 1–5. https://doi.org/10.1109/roedunet54112.2021.9638275
Stadnicka, D., Sęp, J., Amadio, R., Mazzei, D., Tyrovolas, M., Stylios, C., Carreras-Coch, A., Merino, J. A., Żabiński, T., & Navarro, J. (2022). Industrial Needs in the Fields of Artificial Intelligence, Internet of Things and Edge Computing. Sensors, 22(12), 4501. https://doi.org/10.3390/s22124501
Sumathi, D., Karthikeyan, S., Sivaprakash, P., & Selvaraj, P. (2022). Chapter Eleven - 5G Communication for edge computing. Advances in Computers, 127, 307–331. https://doi.org/10.1016/bs.adcom.2022.02.008
Syu, J. H., Lin, J. C. W., Srivastava, G., & Yu, K. (2023). A Comprehensive Survey on Artificial Intelligence Empowered Edge Computing on Consumer Electronics. IEEE Transactions on Consumer Electronics, 69(4), 1023–1034. https://doi.org/10.1109/tce.2023.3318150
Tripathy, S. S., Imoize, A. L., Rath, M., Tripathy, N., Bebortta, S., Lee, C. C., Chen, T. Y., Ojo, S., Isabona, J., & Pani, S. K. (2023). A Novel Edge-Computing-Based Framework for an Intelligent Smart Healthcare System in Smart Cities. Sustainability, 15(1), 735. https://doi.org/10.3390/su15010735
Unal, D., Bennbaia, S., & Catak, F. O. (2022). Machine Learning for the Security of Healthcare Systems Based on Internet of Things and Edge Computing. Cybersecurity and Cognitive Science, 12, 299–320. https://doi.org/10.1016/b978-0-323-90570-1.00007-3
Zhu, Z., Hu, Z., Dai, W., Chen, H., & Lv, Z. (2022). Deep Learning for Autonomous Vehicle and Pedestrian Interaction Safety. Safety Science, 145, 105479. https://doi.org/10.1016/j.ssci.2021.105479
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Technology Informatics and Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.