Nutritional Status Classification Of Stunting In Toddlers Using Naive Bayes Classifier Method
DOI:
https://doi.org/10.51903/jtie.v3i1.154Kata Kunci:
Stunting, Nutritional Status, Classification, Intervention, Anthropometric MeasurementsAbstrak
Stunting in toddlers is one of the prevalent issues of malnutrition in Indonesia. The causes of Stunting are diverse, and one contributing factor is the insufficient nutritional intake required for toddlers. The categorization of Stunting nutritional status in toddlers is crucial to identify those experiencing Stunting, enabling appropriate interventions to prevent more serious health problems in the future. This research aims to develop a classification model for short nutritional status in toddlers using the Naive Bayes Classifier method. The data utilized in this study originate from anthropometric measurements of toddlers in the Malebo area, Kandangan, Temanggung, Central Java. The anthropometric data include weight, height, and age of the toddlers. This data is then processed using the Naive Bayes Classifier method to classify the nutritional status of Stunting in toddlers. The results of this research are expected to assist in identifying toddlers experiencing Stunting, facilitating appropriate interventions to prevent more serious health issues in the future. Additionally, the Naive Bayes Classifier method employed can be applied in similar studies to enhance the quality of life, especially for children in Indonesia, particularly in the Malebo area, Kandangan, Temanggung, Central Java.
Referensi
AlNuaimi, Noura, Mohammad Mehedy Masud, Mohamed Adel Serhani, dan Nazar Zaki. 2022. “Streaming feature selection algorithms for big data: A survey.” Applied Computing and Informatics 18(1–2). doi: 10.1016/j.aci.2019.01.001.
AMAN KHARWAL. 2021. “Classification Report in Machine Learning.” The Clever Programmer.
Ardiyanto, Agus, dan Enny Itje Sela. 2024. “Analisis Sentimen Opini Mahasiswa Terhadap Aplikasi Portal Mahasiswa UTY Menggunakan Metode Naïve Bayes Classifier.” Jurnal Indonesia : Manajemen Informatika dan Komunikasi 5(1):525–40. doi: 10.35870/JIMIK.V5I1.508.
Budiman, Setiawan, Andi Sunyoto, dan Asro Nasiri. 2021. “Analisa Performa Penggunaan Feature Selection untuk Mendeteksi Intrusion Detection Systems dengan Algoritma Random Forest Classifier.” SISTEMASI 10(3):754–60.
Chicco, Davide, dan Giuseppe Jurman. 2020. “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.” BMC Genomics 21(1). doi: 10.1186/s12864-019-6413-7.
Irawan Saputra, Dede, dan Dadang Lukman Hakim. 2022. “Implementasi Algoritma Gaussian Naive Bayes Classifier Untuk Prediksi Potensi Tsunami Berbasis Mikrokontroler.” EPSILON: Journal of Electrical Engineering and Information Technology 20(2). doi: 10.55893/epsilon.v20i2.94.
Jefriyanto, Jefriyanto, Nur Ainun, Muchamad Arif, dan Al Ardha. 2023. “Application of Naïve Bayes Classification to Analyze Performance Using Stopwords.” Journal of Information System, Technology and Engineering 1(2):49–53. doi: 10.61487/JISTE.V1I2.15.
Kebijakan, Badan, Pembangunan Kesehatan, dan Kementerian Kesehatan Ri. 2023. Status Gizi SSGI 2022.
Kresna, Dyta, Devi Damayanti, dan Muhammad Jakfar. 2023. “KLASIFIKASI STATUS STUNTING BALITA MENGGUNAKAN ALGORITMA FUZZY C-MEANS (STUDI KASUS POSYANDU RW 01 KELURAHAN JEPARA SURABAYA).” MATHunesa: Jurnal Ilmiah Matematika 11(3):533–42. doi: 10.26740/MATHUNESA.V11N03.P524-533.
Lonang, Syahrani, dan Dwi Normawati. 2022. “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination.” JURNAL MEDIA INFORMATIKA BUDIDARMA 6(1):49–56. doi: 10.30865/MIB.V6I1.3312.
Ozsahin, Dilber Uzun, Mubarak Taiwo Mustapha, Auwalu Saleh Mubarak, Zubaida Said Ameen, dan Berna Uzun. 2022. “Impact of feature scaling on machine learning models for the diagnosis of diabetes.” dalam Proceedings - 2022 International Conference on Artificial Intelligence in Everything, AIE 2022.
Amirudin, Muhamad, dan Alz Danny Wowor. 2023. “Analisis Perbandingan Klasifikasi Balita Beresiko Stunting Menggunakan Metode Support Vector Machine dan Decission Tree.” Proceedings of the National Conference on Electrical Engineering, Informatics, Industrial Technology, and Creative Media 3(1):581–91.
Putri, Raiy, Pratama Sari, Maria Montessori Prodi, Pendidikan Pancasila, dan Dan Kewarganegaraan. t.t. “Upaya Pemerintah Dan Masyarakat Dalam Mengatasi Masalah Stunting Pada Anak Balita.” 129 Journal of Civic Education 4(2):2021.
Rahmadhita, Kinanti. 2020. “Permasalahan Stunting dan Pencegahannya.” Jurnal Ilmiah Kesehatan Sandi Husada 11(1). doi: 10.35816/jiskh.v11i1.253.
Raihan, M., Rafiiful Allaam, dan Agung Toto Wibowo. 2021. “Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network (CNN).” e-Prceeding of Engineering 8(2).
Ridho Nugroho, Muhammad, Rambat Nur Sasongko, dan Muhammad Kristiawan. 2021. “Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Usia Dini di Indonesia.” 5(2):2269–76. doi: 10.31004/obsesi.v5i2.1169.
Rozaq, Abdul, dan Ari Joko Purnomo. 2022. “View of CLASSIFICATION OF STUNTING STATUS IN TODDLERS USING NAIVE BAYES METHOD IN THE CITY OF MADIUN BASED ON WEBSITE.” Journal of Computing and Information Technology 69–76. Diambil 16 Februari 2024 (https://ejournal.nusamandiri.ac.id/index.php/techno/article/view/3337/951).
Setyanto, Riky Ananda, dan Enny Itje Sela. 2023. “Klasifikasi Kematangan Buah Ciplukan dengan Metode Naive Bayes dan Ekstraksi Fitur GLCM.” Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi 12(3).
Sheth, Vraj, Urvashi Tripathi, dan Ankit Sharma. 2022. “A Comparative Analysis of Machine Learning Algorithms for Classification Purpose.” dalam Procedia Computer Science. Vol. 215.
Yuwanti, Laily Himawati, dan Meity Mulya Susanti. 2022. “View of Pencegahan Stunting pada 1000 HPK.” Jurnal ABDIMAS-HIP Pengabdian Kepada Masyarakat 35–39. Diambil 16 Februari 2024 (https://akbidhipekalongan.ac.id/e-journal/index.php/abdimaship/article/view/166/166).