High electric current and hours can increase layer thickness and decrease white rust corrosion using Zn2+ electroplating

Penulis

  • Slamet Riyadi Jakarta Global University
  • Yanuar Zulardiansyah Arief Jakarta Global University
  • Antonius Darma Setiawan Jakarta Global University
  • Agung Pangestu Jakarta Global University
  • Rosyid Ridlo Al-Hakim Jakarta Global University

DOI:

https://doi.org/10.51903/jtie.v1i2.140

Kata Kunci:

Coating, Electrical Current, Electrochemical, Spark Plugs, White Rust.

Abstrak

Electroplating was the process of coating metal surfaces using the electrochemical method. We used alkaline zinc (Zn2+) plating that was anti-corrosion coating, cheapest, evenly adhesion, as well as better-looking crushing. This study aims to test and measure the thickness of the layer on spark plugs with variations in different electrical currents 300, 400, and 500A and increased hours during the coating process, investigate the corrosion resistance of white rust on the surface and analyze the changes in alkaline zinc concentration and temperature that affect the thickness of the layer, respectively. The results, such as 1st sample 13 pcs, 300A, and thickness of 7.26-micron with white rust 9 pcs. 2nd sample 13 pcs, 400A, and thickness of 9.15-micron white rust 5 pcs. 3rd sample 13 pcs, 500A, and thickness of 12.75-micron white rust 3 pcs. The high electric current (500A) and 45 hours of the experiment would influence the lowest white rust corrosion level. The high alkaline zinc solution with an optimum 36°C solution temperature and 500A electric current would undoubtedly deposit the white rust until 3 pcs.

Referensi

Altmayer, F. (1985). Critical Aspects of the Salt Spray Test. Plating Surface Fin., 72(9), 36–40.
Andayani, R. D., Nuryanti, S. Z., Afriany, R., & Rais, A. (2017). Analisa Pengaruh Jarak Katoda dan Anoda dalam Proses Elektroplating Aluminium terhadap Ketebalan Lapisan. TEKNIKA: Jurnal Teknik, 3(2), 142–153. https://doi.org/10.35449/TEKNIKA.V3I2.47
Assegaff, M., & Purwanto, H. (2018). Pengaruh Tegangan Pelapisan Nikel pada Tembaga dalam Pelapisan Khrom Dekoratif Terhadap Ketebalan, Kekerasan dan Kekasaran Lapisan. Jurnal Ilmiah MOMENTUM, 13(2). https://doi.org/10.36499/JIM.V13I2.2031
Basmal, B., Bayuseno, A. P., & Nugroho, S. (2012). Pengaruh Suhu dan Waktu Pelapisan Tembaga-Nikel pada Baja Karbon Rendah Secara Elektroplating Terhadap Nilai Ketebalan dan Kekasaran. ROTASI, 14(2), 23–28. https://doi.org/10.14710/ROTASI.14.2.23-28
Electropoli. (2022). Alkaline zinc plating: high-performance electrogalvanization. Available at: https://www.electropoli.com/alkaline-zinc-plating, accessed September 17 2022.
Grahame, D. C. (1947). The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 41(3), 441–501. https://doi.org/10.1021/CR60130A002/ASSET/CR60130A002.FP.PNG_V03
Ito, M., Ooi, A., Tada, E., & Nishikata, A. (2020). In Situ Evaluation of Carbon Steel Corrosion under Salt Spray Test by Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 167, 101508. https://doi.org/10.1149/1945-7111/AB9C85
Protsenko, V. S., & Danilov, F. I. (2014). Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages. Clean Technologies and Environmental Policy, 16, 1201–1206. https://doi.org/10.1007/S10098-014-0711-1
Rasyad, A., & Budiarto, B. (2018). Analisis Pengaruh Temperatur, Waktu, dan Kuat Arus Proses Elektroplating terhadap Kekuatan Tarik, Kekuatan Tekuk dan Kekerasan pada Baja Karbon Rendah. Jurnal Rekayasa Mesin, 9(3), 173–182. https://doi.org/10.21776/UB.JRM.2018.009.03.4
Sabekti, K., Mansjur, G. S., & Diningrum, J. P. (2018). Analisis Pengaruh Kuat Arus Listrik Terhadap Ketebalan Pelapisan Perak pada Alumunium A6063 dengan Proses Electroplating. Jurnal Ilmiah Teknik Mesin, 6(1), 20–29.
Saleh, A. A. (2014). Electroplating teknik pelapisan logam dengan cara listrik. Bandung (ID): Yrama Widia.
Schütter, C., Pohlmann, S., & Balducci, A. (2019). Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials, 9(25), 1900334. https://doi.org/10.1002/AENM.201900334
Selly, R., Rahmah, S., Nasution, H. I., Syahputra, R. A., & Zubir, M. (2020). Electroplating Method on Copper (Cu) Substrate with Silver (Ag) Coating Applied. Indonesian Journal of Chemical Science and Technology (IJCST), 3(2), 38–41. https://doi.org/10.24114/IJCST.V3I2.19524
Setiawan, A., Laura Indrayani, N., & Herawan, B. (2019). Pengaruh Arus dan Waktu Terhadap Lapisan Zinc Plating pada Material SGD400-D dengan Menggunakan Proses Elektroplating. Jurnal Ilmiah Teknik Mesin, 7(1), 32–39. https://doi.org/10.33558/JITM.V7I1.1904
Suarsana, K., Astika, I. M., & Negara, D. N. K. P. (2019). Efek Tegangan Listrik dan Waktu Proses Elektroplating Krom Keras terhadap Tebal Lapisan. Jurnal Energi Dan Manufaktur, 12(2), 75–81. https://doi.org/10.24843/JEM.2019.v12.i02.p05
Sungkowo, A., Trikolas, T., Al-Hakim, R. R., Riyadi, S., Arief, Y. Z., & Jaenul, A. (2021). Studi perbandingan uji material aluminium murni (Al) dan pelapisan aluminium murni dengan perak (Ag) menggunakan metoda elektroplating. Electro Luceat, 7(2). https://doi.org/10.32531/jelekn.v7i2.381

Diterbitkan

2022-09-26

Cara Mengutip

High electric current and hours can increase layer thickness and decrease white rust corrosion using Zn2+ electroplating. (2022). Journal of Technology Informatics and Engineering, 1(2), 43-54. https://doi.org/10.51903/jtie.v1i2.140