Optimizing AI Performance in Industry: A Hybrid Computing Architecture Approach Based on Big Data

Penulis

  • Maya Utami Dewi Universitas Sains dan Teknologi Komputer
  • Lukman Santoso Universitas Sains dan Teknologi Komputer
  • Agustinus Budi Santoso Universitas Sains dan Teknologi Komputer

DOI:

https://doi.org/10.51903/jtie.v3i3.201

Kata Kunci:

Hybrid Computing Architecture, AI Optimization, Big Data Analytics, Edge-Cloud Integration, Energy Efficiency in Computing.

Abstrak

In the era of Industry 4.0, integrating artificial intelligence (AI) and big data analytics in the industrial sector demands high-performance computing infrastructure to handle increasingly complex and voluminous datasets. This study investigates the optimization of AI performance by implementing a hybrid computing architecture, integrating CPUs, GPUs, FPGAs, and edge-cloud computing. The research aims to enhance processing speed, model accuracy, and energy efficiency, addressing the limitations of standalone computing systems. A quantitative methodology was employed, using over 1 TB of industrial data from IoT sensors and production logs. A hybrid architecture was implemented with dynamic workload scheduling to distribute tasks efficiently across computational components. Performance metrics included processing time, model accuracy, energy consumption, and cost analysis. Results demonstrated that hybrid architectures significantly improved performance: the CPU-GPU combination reduced processing times to 650 ms, increased model accuracy to 88.3%, and achieved an energy consumption of 2.1 kWh. Meanwhile, the CPU-FPGA configuration, while slightly less accurate (87.5%), proved more energy-efficient at 1.3 kWh. AI models developed using hybrid systems exhibited superior predictive accuracy, with Mean Squared Error (MSE) as low as 0.0248 and R² of 0.91. The study concludes that hybrid computing architecture is a transformative approach for optimizing AI systems in industrial applications, balancing speed, accuracy, and energy efficiency. These findings provide actionable insights for industries aiming to leverage advanced computing technologies for improved operational efficiency and sustainability. Future research should focus on advanced workload scheduling and cost-effectiveness strategies to maximize the potential of hybrid systems.

Referensi

Abbaszadeh Shahri, A., Pashamohammadi, F., Asheghi, R., & Abbaszadeh Shahri, H. (2022). Automated Intelligent Hybrid Computing Schemes to Predict Blasting Induced Ground Vibration. Engineering with Computers, 38, 3335–3349. https://doi.org/10.1007/s00366-021-01444-1

Agomuo, O. C., Jnr, O. W. B., & Muzamal, J. H. (2024). Energy-Aware AI-Based Optimal Cloud Infra Allocation for Provisioning of Resources. 27th IEEE/ACIS International Summer Conference on Software Engineering Artificial Intelligence Networking and Parallel/Distributed Computing, SNPD 2024 - Proceedings, 269–274. https://doi.org/10.1109/snpd61259.2024.10673918

Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., AlGhamdi, A. S., & Alshamrani, S. S. (2022). Energetics Systems and Artificial Intelligence: Applications of Industry 4.0. Energy Reports, 8, 334–361. https://doi.org/10.1016/j.egyr.2021.11.256

Alahakoon, D., Nawaratne, R., Xu, Y., De Silva, D., Sivarajah, U., & Gupta, B. (2023). Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities. Information Systems Frontiers, 25(1), 221–240. https://doi.org/10.1007/s10796-020-10056-x

Ali, O., Ishak, M. K., Bhatti, M. K. L., Khan, I., & Kim, K. Il. (2022). A Comprehensive Review of Internet of Things: Technology Stack, Middlewares, and Fog/Edge Computing Interface. Sensors, 22(3), 995. https://doi.org/10.3390/s22030995

Anees, T., Habib, Q., Al-Shamayleh, A. S., Khalil, W., Obaidat, M. A., & Akhunzada, A. (2023). The Integration of WoT and Edge Computing: Issues and Challenges. Sustainability (Switzerland), 15(7), 5983. https://doi.org/10.3390/su15075983

Ayachi, R., Said, Y., & Ben Abdelali, A. (2021). Optimizing Neural Networks for Efficient FPGA Implementation: A Survey. Archives of Computational Methods in Engineering, 28(7), 4537–4547. https://doi.org/10.1007/s11831-021-09530-9

Baccour, E., Mhaisen, N., Abdellatif, A. A., Erbad, A., Mohamed, A., Hamdi, M., & Guizani, M. (2022). Pervasive AI for IoT Applications: A Survey on Resource-Efficient Distributed Artificial Intelligence. IEEE Communications Surveys and Tutorials, 24(4), 2366–2418. https://doi.org/10.1109/comst.2022.3200740

Bal, P. K., Mohapatra, S. K., Das, T. K., Srinivasan, K., & Hu, Y. C. (2022). A Joint Resource Allocation, Security with Efficient Task Scheduling in Cloud Computing Using Hybrid Machine Learning Techniques. Sensors, 22(3), 1242. https://doi.org/10.3390/s22031242

Bobda, C., Mbongue, J. M., Chow, P., Ewais, M., Tarafdar, N., Vega, J. C., Eguro, K., Koch, D., Handagala, S., Leeser, M., Herbordt, M., Shahzad, H., Hofste, P., Ringlein, B., Szefer, J., Sanaullah, A., & Tessier, R. (2022). The Future of FPGA Acceleration in Datacenters and the Cloud. ACM Transactions on Reconfigurable Technology and Systems, 15(3), 1–42. https://doi.org/10.1145/3506713

Devi, B. S. K., Vijayakumar, V., Suseela, G., Kavin, B. P., Sivaramakrishnan, S., & Rodrigues, J. J. P. C. (2022). An Improved Security Framework in Health Care Using Hybrid Computing. Malaysian Journal of Computer Science, 2022(1), 50–61. https://doi.org/10.22452/mjcs.sp2022no1.4

Huang, Z., Fey, M., Liu, C., Beysel, E., Xu, X., & Brecher, C. (2023). Hybrid Learning-Based Digital Twin for Manufacturing Process: Modeling Framework and Implementation. Robotics and Computer-Integrated Manufacturing, 82, 102545. https://doi.org/10.1016/j.rcim.2023.102545

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management, 7(1), 83–111. https://doi.org/10.1142/S2424862221300040

Jiang, C., He, Z., Li, F., Xie, F., Zheng, L., Yang, J., & Yang, M. (2023). A Hybrid Computing Framework for Risk-Oriented Reliability Analysis in Dynamic PSA Context: A Case Study. Quality and Reliability Engineering International, 39(8), 3445–3471. https://doi.org/10.1002/qre.3196

Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy Efficiency in Cloud Computing Data Centers: A Survey on Software Technologies. Cluster Computing, 26(3), 1845–1875. https://doi.org/10.1007/s10586-022-03713-0

Kaur, M., & Aron, R. (2022). An Energy-Efficient Load Balancing Approach for Scientific Workflows in Fog Computing. Wireless Personal Communications, 125(4), 3549–3573. https://doi.org/10.1007/s11277-022-09724-9

Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M., & Buyya, R. (2022). Machine Learning (ML)-Centric Resource Management in Cloud Computing: A Review and Future Directions. Journal of Network and Computer Applications, 204, 103405. https://doi.org/10.1016/j.jnca.2022.103405

Kong, X., Wu, Y., Wang, H., & Xia, F. (2022). Edge Computing for Internet of Everything: A Survey. IEEE Internet of Things Journal, 9(23), 23472–23485. https://doi.org/10.1109/jiot.2022.3200431

Kristian, A., Sumarsan Goh, T., Ramadan, A., Erica, A., & Visiana Sihotang, S. (2024). Application of AI in Optimizing Energy and Resource Management: Effectiveness of Deep Learning Models. International Transactions on Artificial Intelligence (ITALIC), 2(2), 99–105. https://doi.org/10.33050/italic.v2i2.530

Li, J., Gu, C., Xiang, Y., & Li, F. (2022). Edge-Cloud Computing Systems for Smart Grid: State-of-the-Art, Architecture, and Applications. Journal of Modern Power Systems and Clean Energy, 10(4), 805–817. https://doi.org/10.35833/mpce.2021.000161

Liu, B., Luo, Z., Chen, H., & Li, C. (2022). A Survey of State-of-the-Art on Edge Computing: Theoretical Models, Technologies, Directions, and Development Paths. IEEE Access, 10, 54038–54063. https://doi.org/10.1109/access.2022.3176106

Memari, P., Mohammadi, S. S., Jolai, F., & Tavakkoli-Moghaddam, R. (2022). A Latency-Aware Task Scheduling Algorithm for Allocating Virtual Machines in a Cost-Effective and Time-Sensitive Fog-Cloud Architecture. Journal of Supercomputing, 78(1), 93–122. https://doi.org/10.1007/s11227-021-03868-4

Mithas, S., Chen, Z. L., Saldanha, T. J. V., & De Oliveira Silveira, A. (2022). How Will Artificial Intelligence and Industry 4.0 Emerging Technologies Transform Operations Management? Production and Operations Management, 31(12), 4475–4487. https://doi.org/10.1111/poms.13864

Muralidhar, R., Borovica-Gajic, R., & Buyya, R. (2022). Energy Efficient Computing Systems: Architectures, Abstractions and Modeling to Techniques and Standards. ACM Computing Surveys, 54(11), 1–37. https://doi.org/10.1145/3511094

Murino, T., Monaco, R., Nielsen, P. S., Liu, X., Esposito, G., & Scognamiglio, C. (2023). Sustainable Energy Data Centres: A Holistic Conceptual Framework for Design and Operations. Energies, 16(15), 5764. https://doi.org/10.3390/en16155764

Nain, G., Pattanaik, K. K., & Sharma, G. K. (2022). Towards Edge Computing in Intelligent Manufacturing: Past, Present and Future. Journal of Manufacturing Systems, 62, 588–611. https://doi.org/10.1016/j.jmsy.2022.01.010

Raeisi-Varzaneh, M., Dakkak, O., Habbal, A., & Kim, B. S. (2023). Resource Scheduling in Edge Computing: Architecture, Taxonomy, Open Issues and Future Research Directions. IEEE Access, 11, 25329–25350. https://doi.org/10.1109/access.2023.3256522

Rammer, C., Fernández, G. P., & Czarnitzki, D. (2022). Artificial Intelligence and Industrial Innovation: Evidence from German Firm-Level Data. Research Policy, 51(7), 104555. https://doi.org/10.1016/j.respol.2022.104555

Rana, N., Jeribi, F., Khan, Z., Alrawagfeh, W., Ben Dhaou, I., Haseebuddin, M., & Uddin, M. (2024). A Systematic Literature Review on Contemporary And Future Trends in Virtual Machine Scheduling Techniques in Cloud and Multi-Access Computing. Frontiers in Computer Science, 6, 1288552. https://doi.org/10.3389/fcomp.2024.1288552

Rodrigues Moreira, L. F., Moreira, R., Travençolo, B. A. N., & Backes, A. R. (2023). An Artificial Intelligence-as-a-Service Architecture for Deep Learning Model Embodiment on Low-Cost Devices: A Case Study of Covid-19 Diagnosis. Applied Soft Computing, 134, 110014. https://doi.org/10.1016/j.asoc.2023.110014

Saiteja, P., & Ashok, B. (2022). Critical Review on Structural Architecture, Energy Control Strategies and Development Process Towards Optimal Energy Management in Hybrid Vehicles. Renewable and Sustainable Energy Reviews, 157, 112038. https://doi.org/10.1016/j.rser.2021.112038

Saleem, M. U., Shakir, M., Usman, M. R., Bajwa, M. H. T., Shabbir, N., Shams Ghafaroki, P., & Daniel, K. (2023). Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids. Energies, 16(12), 4835. https://doi.org/10.3390/en16124835

Solanki, P., Baldaniya, D., Jogani, D., Chaudhary, B., Shah, M., & Kshirsagar, A. (2022). Artificial Intelligence: New Age of Transformation in Petroleum Upstream. Petroleum Research, 7(1), 106–114. https://doi.org/10.1016/j.ptlrs.2021.07.002

Stergiou, C. L., & Psannis, K. E. (2022). Digital Twin Intelligent System for Industrial IoT-Based Big Data Management and Analysis in Cloud. Virtual Reality and Intelligent Hardware, 4(4), 279–291. https://doi.org/10.1016/j.vrih.2022.05.003

Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., & Hewage, C. (2023). A Survey on Optimization Techniques for Edge Artificial Intelligence (AI). Sensors, 23(3), 1279. https://doi.org/10.3390/s23031279

Tatineni, S., & Chakilam, N. V. (2024). Integrating Artificial Intelligence with DevOps for Intelligent Infrastructure Management: Optimizing Resource Allocation and Performance in Cloud-Native Applications. Journal of Bioinformatics and Artificial Intelligence, 4(1), 109–142. https://doi.org/10.1103/physrevlett.125.100501

Ullah, A., Kiss, T., Kovács, J., Tusa, F., Deslauriers, J., Dagdeviren, H., Arjun, R., & Hamzeh, H. (2023). Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions. Journal of Cloud Computing, 12(1), 135. https://doi.org/10.1186/s13677-023-00516-5

Zhang, H., Liu, J., Bai, J., Li, S., Luo, L., Wei, S., Wu, J., & Kang, W. (2022). HD-CIM: Hybrid-Device Computing-in-Memory Structure Based on MRAM and SRAM to Reduce Weight Loading Energy of Neural Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(11), 4465–4474. https://doi.org/10.1109/tcsi.2022.3199440

Diterbitkan

2024-12-24

Cara Mengutip

Optimizing AI Performance in Industry: A Hybrid Computing Architecture Approach Based on Big Data. (2024). Journal of Technology Informatics and Engineering, 3(3), 308-323. https://doi.org/10.51903/jtie.v3i3.201